题意

给出一棵 n 个点的树,每个点有黑白两种颜色。q 次询问,每次

询问给出 x 和 y,问能否选出一个 x 个点的联通子图,使得其中

黑点数目为 y。

范围

n ≤ 5000,q ≤ 10^5

其实证明我也不会没弄懂,只是听老师讲了,我们可以猜想:对于某一大小的连通子图,其包含黑点数的最小值与最大值之间的所有点数目都能够取得到。

证明:证明很简单,考虑从最小值一个个删除点并加入点到最大值的过

程,黑点个数每次最多变化 1,因此能遍历从最小值到最大值中

的所有点。(from dzy)

我们定义f[x][y]表示以x为根的树中有y个黑点的最小节点数

同理g[x][y]表示以x为根的树中有y个黑点的最大节点数

然后这题便可以树上背包解决,时间复杂度(n^2)

代码

#include<bits/stdc++.h>
using namespace std;
const int Max=5010;
int n,T,q,tot,u,v,root,xi,yi;
int ver[Max*2],head[Max],Next[Max*2];
int score[Max];
int f[Max][Max],g[Max][Max],siz[Max],ff[Max],gg[Max];
void add(int x,int y){
ver[++tot]=y;Next[tot]=head[x];head[x]=tot;
}
void dp(int x,int fa){//由于存树时用的是双向图,此处要判断
siz[x]=1;
g[x][score[x]]=1;//初始化保证g[x][0] or f[x][0]为1,否则最小值永远是0
f[x][score[x]]=1;
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(fa==y) continue;
dp(y,x);
memcpy(ff,f[x],sizeof f[x]);//由于在进行背包的过程中求得的不一定是最优解,故用临时数组进行储存
memcpy(gg,g[x],sizeof g[x]);
for(int t=siz[x];t>=score[x];--t){//两棵树的合并
for(int j=siz[y];j>=score[y];--j){
ff[t+j]=min(ff[t+j],f[x][t]+f[y][j]);
gg[t+j]=max(gg[t+j],g[x][t]+g[y][j]);
}
}
siz[x]+=siz[y];
for(int j=score[x];j<=siz[x];++j){
f[x][j]=ff[j];
g[x][j]=gg[j];
}
}
for(int i=0;i<=siz[x];++i){//用g[0][x] f[0][x]储存答案
f[0][i]=min(f[0][i],f[x][i]);
g[0][i]=max(g[0][i],g[x][i]);
}
return;
}
int main(){
//freopen("trees.in","r",stdin);
//freopen("trees.out","w",stdout);
scanf("%d",&T);
while(T--){
scanf("%d %d",&n,&q);
memset(head,0,sizeof(head));
memset(f,0x3f,sizeof(f));
memset(g,0xcf,sizeof(g));
tot=0;
for(int i=1;i<n;++i){
scanf("%d %d",&u,&v);
add(u,v);
add(v,u);
}
for(int i=1;i<=n;++i){
scanf("%d",&score[i]);
}
dp(1,0);
while(q--){
scanf("%d %d",&xi,&yi);
if(xi>=f[0][yi]&&xi<=g[0][yi]){
puts("YES");
}
else puts("NO");
}printf("\n");
}
return 0;
}

注:bzoj需加快读才能过,比较卡时间

bzoj5072 小A的树 题解的更多相关文章

  1. BZOJ5072 小A的树(树形dp)

    容易猜到能选择的黑点个数是一个连续区间.那么设f[i][j]为i子树内选j个点形成包含根的连通块,最多有几个黑点,g[i][j]为最少有几个黑点,暴力dp是O(n2)的,求出每个连通块大小对应的黑点数 ...

  2. [BZOJ5072] 小A的树

    设计状态\(f[i][j]\)表示以i为根的子树,包含j个点的最小黑点数,\(g[i][j]\)表示以\(i\) 为子树,包含\(j\)个点的最大黑点数,然后树形背包转移即可. 每次询问的时候就看包含 ...

  3. 【BZOJ5072】[Lydsy十月月赛]小A的树 树形DP

    [BZOJ5072][Lydsy十月月赛]小A的树 题解:考虑我们从一个联通块中替换掉一个点,导致黑点数量的变化最多为1.所以我们考虑维护对于所有的x,y的最大值和最小值是多少.如果询问的y在最大值和 ...

  4. 小机房的树 codevs 2370

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 小机房有棵焕狗种的树 ...

  5. 【codevs2370】小机房的树 LCA 倍增

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...

  6. LCA(倍增在线算法) codevs 2370 小机房的树

    codevs 2370 小机房的树 时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...

  7. codevs——2370 小机房的树

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 小机房有棵焕狗种的树,树上有N个 ...

  8. Vijos1448校门外的树 题解

    Vijos1448校门外的树 题解 描述: 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的…… 如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现 ...

  9. Codevs 2370 小机房的树

    2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为 ...

随机推荐

  1. hdu 6397 Character Encoding (生成函数)

    Problem Description In computer science, a character is a letter, a digit, a punctuation mark or som ...

  2. Apache之——多虚拟主机多站点配置的两种实现方案

    Apache中配置多主机多站点,可以通过两种方式实现: 将同一个域名的不同端口映射到不同的虚拟主机,不同端口映射到不同的站点: 将同一个端口映射成不同的域名,不同的域名映射到不同的站点. 我们只需要修 ...

  3. Spring aop 影响本地事务的回滚总结

    1  @Before   不会,因为还没执行到service的业务逻辑 2  @ After    默认情况下,报错会影响事务回滚., 当设置@Order属性并设置值优先级大小, 即使报错也不会回滚了 ...

  4. Activiti 开发案例之动态指派任务

    流程图 以上是一个请假的流程图,以下为流程任务节点描述: 员工发起请假流程 部门经理审批 同意则进入人事审批 拒绝则调整申请或者直接结束流程 人事审批通过则进入销假环节 人事审批拒绝则调整申请或者直接 ...

  5. Css3动画效果,彩色文字效果,超简单的loveHeart

    <!DOCTYPE html><html><head><meta charset="utf-8" /><title>Cs ...

  6. Java——反射:运行时的类信息

    RTTI的使用 如果不知道某个对象的确切类型,RTTI会告诉我们,但是有一个限制:这个类型在编译时必须已知,这样才能使用RTTI识别它,并利用这些信息做一些有用的事情.  2.什么情况下需要反射 假设 ...

  7. 关于Oracle本地连接出现与监听有关的问题的解决方法探讨

    关于Oracle本地连接出现与监听有关的问题的解决方法探讨 监听的作用: 用于应用桌面即用户与数据库服务器建立连接的媒介,客户端发送连接请求,监听识别请求并建立客户端与服务器的连接后,监听的使命并完成 ...

  8. netty源码解解析(4.0)-17 ChannelHandler: IdleStateHandler实现

    io.netty.handler.timeout.IdleStateHandler功能是监测Channel上read, write或者这两者的空闲状态.当Channel超过了指定的空闲时间时,这个Ha ...

  9. 使用idea在linux上启动springboot项目

    springboot项目启动方式 1.改成war包放到tomcat上,网上方法很多不再介绍. 2.直接用jar包启动,比较方便,不需要修改项目文件,推荐使用jar包起 将项目和package打成jar ...

  10. 自己实现spring核心功能 一

    聊聊spring spring对于java开发者来说,是最熟悉不过的框架了,我们日常开发中每天都在使用它.它有着各种各样的好处,简单易用,得心应手... ... 我们一说到spring就会讲到ioc ...