bzoj5072 小A的树 题解
题意
给出一棵 n 个点的树,每个点有黑白两种颜色。q 次询问,每次
询问给出 x 和 y,问能否选出一个 x 个点的联通子图,使得其中
黑点数目为 y。
范围
n ≤ 5000,q ≤ 10^5
其实证明我也不会没弄懂,只是听老师讲了,我们可以猜想:对于某一大小的连通子图,其包含黑点数的最小值与最大值之间的所有点数目都能够取得到。
证明:证明很简单,考虑从最小值一个个删除点并加入点到最大值的过
程,黑点个数每次最多变化 1,因此能遍历从最小值到最大值中
的所有点。(from dzy)
我们定义f[x][y]表示以x为根的树中有y个黑点的最小节点数
同理g[x][y]表示以x为根的树中有y个黑点的最大节点数
然后这题便可以树上背包解决,时间复杂度(n^2)
代码
#include<bits/stdc++.h>
using namespace std;
const int Max=5010;
int n,T,q,tot,u,v,root,xi,yi;
int ver[Max*2],head[Max],Next[Max*2];
int score[Max];
int f[Max][Max],g[Max][Max],siz[Max],ff[Max],gg[Max];
void add(int x,int y){
ver[++tot]=y;Next[tot]=head[x];head[x]=tot;
}
void dp(int x,int fa){//由于存树时用的是双向图,此处要判断
siz[x]=1;
g[x][score[x]]=1;//初始化保证g[x][0] or f[x][0]为1,否则最小值永远是0
f[x][score[x]]=1;
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(fa==y) continue;
dp(y,x);
memcpy(ff,f[x],sizeof f[x]);//由于在进行背包的过程中求得的不一定是最优解,故用临时数组进行储存
memcpy(gg,g[x],sizeof g[x]);
for(int t=siz[x];t>=score[x];--t){//两棵树的合并
for(int j=siz[y];j>=score[y];--j){
ff[t+j]=min(ff[t+j],f[x][t]+f[y][j]);
gg[t+j]=max(gg[t+j],g[x][t]+g[y][j]);
}
}
siz[x]+=siz[y];
for(int j=score[x];j<=siz[x];++j){
f[x][j]=ff[j];
g[x][j]=gg[j];
}
}
for(int i=0;i<=siz[x];++i){//用g[0][x] f[0][x]储存答案
f[0][i]=min(f[0][i],f[x][i]);
g[0][i]=max(g[0][i],g[x][i]);
}
return;
}
int main(){
//freopen("trees.in","r",stdin);
//freopen("trees.out","w",stdout);
scanf("%d",&T);
while(T--){
scanf("%d %d",&n,&q);
memset(head,0,sizeof(head));
memset(f,0x3f,sizeof(f));
memset(g,0xcf,sizeof(g));
tot=0;
for(int i=1;i<n;++i){
scanf("%d %d",&u,&v);
add(u,v);
add(v,u);
}
for(int i=1;i<=n;++i){
scanf("%d",&score[i]);
}
dp(1,0);
while(q--){
scanf("%d %d",&xi,&yi);
if(xi>=f[0][yi]&&xi<=g[0][yi]){
puts("YES");
}
else puts("NO");
}printf("\n");
}
return 0;
}
注:bzoj需加快读才能过,比较卡时间
bzoj5072 小A的树 题解的更多相关文章
- BZOJ5072 小A的树(树形dp)
容易猜到能选择的黑点个数是一个连续区间.那么设f[i][j]为i子树内选j个点形成包含根的连通块,最多有几个黑点,g[i][j]为最少有几个黑点,暴力dp是O(n2)的,求出每个连通块大小对应的黑点数 ...
- [BZOJ5072] 小A的树
设计状态\(f[i][j]\)表示以i为根的子树,包含j个点的最小黑点数,\(g[i][j]\)表示以\(i\) 为子树,包含\(j\)个点的最大黑点数,然后树形背包转移即可. 每次询问的时候就看包含 ...
- 【BZOJ5072】[Lydsy十月月赛]小A的树 树形DP
[BZOJ5072][Lydsy十月月赛]小A的树 题解:考虑我们从一个联通块中替换掉一个点,导致黑点数量的变化最多为1.所以我们考虑维护对于所有的x,y的最大值和最小值是多少.如果询问的y在最大值和 ...
- 小机房的树 codevs 2370
2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 小机房有棵焕狗种的树 ...
- 【codevs2370】小机房的树 LCA 倍增
2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...
- LCA(倍增在线算法) codevs 2370 小机房的树
codevs 2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...
- codevs——2370 小机房的树
2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 小机房有棵焕狗种的树,树上有N个 ...
- Vijos1448校门外的树 题解
Vijos1448校门外的树 题解 描述: 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的…… 如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现 ...
- Codevs 2370 小机房的树
2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为 ...
随机推荐
- kubernetes lowB安装方式
kubernetes离线安装包,仅需三步 基础环境 关闭防火墙 selinux $ systemctl stop firewalld && systemctl disable fire ...
- vue+Elment-UI,修改element组件样式
在用vue开发项目过程中,我们总是避免不了的会使用到elementUI,它里面提供的一些组件都为我们的开发带来了很大的便利,但是,当有时候我们需要使用这些组件的同时又要修改下组件的UI样式的话,我们该 ...
- Python - 自学django,上线一套资产管理系统
一.概述 终于把公司的资产管理网站写完,并通过测试,然后上线.期间包括看视频学习.自己写前后端代码,用时两个多月.现将一些体会记录下来,希望能帮到想学django做web开发的人.大牛可以不用看了,小 ...
- MyBatis 核心配置综述之 ParameterHandler
目录 ParameterHandler 简介 ParameterHandler 创建 ParameterHandler 中的参数从何而来 ParameterHandler 解析 MyBatis 四大核 ...
- ccf 201903-5 317号子任务(60分)
看到这题,第一印象,用dijkstra算法求n次单源最短路,时间复杂度O(n^3),超时30分妥妥的. 于是用优先队列优化,O(n*mlogm),快很多,但依然30. 那么不妨换一种思路,题目要求的是 ...
- 从零开始学习springboot之热部署的配置
各位看官大家好,博主之前因为毕业设计以及毕业旅游耽搁了好长一段时间没有更新博客了,从今天起又会慢慢开始学习啦. 今天主要是来学习springboot热部署的配置. 一. 热部署 我们通常在修改某些文件 ...
- HlpViewer.exe 单独打开
1.在桌面新建一个快捷键 2.添加HlpViewer.exe 的本地地址 3.在添加的地址后面添加 /catalogName VisualStudio12 4.保存快捷键即可 列: 桌面右键-> ...
- 测试自动化:java+selenium3 UI自动化(1) - 环境搭建
1.前言 我大概是在2012年第一次正式接触到自动化测试,那个时候跟随我的团队一起,就当时项目的UI自动化尝试做出了探索. 在我离开那家公司的时候,我们的自动化测试体系仍然难言完美,但是也已经达到了非 ...
- 学习Canvas这一篇文章就够了
一.canvas简介 <canvas> 是 HTML5 新增的,一个可以使用脚本(通常为JavaScript)在其中绘制图像的 HTML 元素.它可以用来制作照片集或者制作简单(也不是 ...
- #348 大陆争霸(DIjkstra)
在一个遥远的世界里有两个国家:位于大陆西端的杰森国和位于大陆东端的 克里斯国.两个国家的人民分别信仰两个对立的神:杰森国信仰象征黑暗和毁灭 的神曾·布拉泽,而克里斯国信仰象征光明和永恒的神斯普林·布拉 ...