CF1027C Minimum Value Rectangle 贪心 数学
2 seconds
256 megabytes
standard input
standard output
You have nn sticks of the given lengths.
Your task is to choose exactly four of them in such a way that they can form a rectangle. No sticks can be cut to pieces, each side of the rectangle must be formed by a single stick. No stick can be chosen multiple times. It is guaranteed that it is always possible to choose such sticks.
Let SS be the area of the rectangle and PP be the perimeter of the rectangle.
The chosen rectangle should have the value P2SP2S minimal possible. The value is taken without any rounding.
If there are multiple answers, print any of them.
Each testcase contains several lists of sticks, for each of them you are required to solve the problem separately.
The first line contains a single integer TT (T≥1T≥1) — the number of lists of sticks in the testcase.
Then 2T2T lines follow — lines (2i−1)(2i−1) and 2i2i of them describe the ii-th list. The first line of the pair contains a single integer nn (4≤n≤1064≤n≤106) — the number of sticks in the ii-th list. The second line of the pair contains nn integers a1,a2,…,ana1,a2,…,an (1≤aj≤1041≤aj≤104) — lengths of the sticks in the ii-th list.
It is guaranteed that for each list there exists a way to choose four sticks so that they form a rectangle.
The total number of sticks in all TT lists doesn't exceed 106106 in each testcase.
Print TT lines. The ii-th line should contain the answer to the ii-th list of the input. That is the lengths of the four sticks you choose from theii-th list, so that they form a rectangle and the value P2SP2S of this rectangle is minimal possible. You can print these four lengths in arbitrary order.
If there are multiple answers, print any of them.
3
4
7 2 2 7
8
2 8 1 4 8 2 1 5
5
5 5 5 5 5
2 7 7 2
2 2 1 1
5 5 5 5
There is only one way to choose four sticks in the first list, they form a rectangle with sides 22 and 77, its area is 2⋅7=142⋅7=14, perimeter is 2(2+7)=182(2+7)=18. 18214≈23.14318214≈23.143.
The second list contains subsets of four sticks that can form rectangles with sides (1,2)(1,2), (2,8)(2,8) and (1,8)(1,8). Their values are 622=18622=18, 20216=2520216=25 and 1828=40.51828=40.5, respectively. The minimal one of them is the rectangle (1,2)(1,2).
You can choose any four of the 55 given sticks from the third list, they will form a square with side 55, which is still a rectangle with sides (5,5)(5,5).
题意:给你n根木棒,从中挑出四根木棒组成一个矩形,矩形面积为S,周长为P,求使P^2/S最小的四根木棒长度
分析:假设矩形宽为a,长为b,则P^2/S=(2*(a+b))^2/a*b=4*(a*a+2*a*b+b*b)/a*b=4*(2+a/b+b/a)
即求a/b+b/a的最小值
a/b+b/a>=2*sqrt(a/b*b/a)=2(当且仅当a/b=b/a时等式成立)
即当a=b时取最小,a!=b时,a,b越接近值越小
所以我们先求出所有可以用来做矩形的边,将这些边排序后再枚举求相邻两边a/b+b/a的最小值
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 998244353;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll n, T, cnt, a[maxn], b[maxn];
int main() {
ios::sync_with_stdio(0);
cin >> T;
while( T -- ) {
cnt = 0;
cin >> n;
for( ll i = 1; i <= n; i ++ ) {
cin >> a[i];
}
sort(a+1,a+n+1);
bool flag = false;
for( ll i = 1; i <= n; i ++ ) {
if(!flag) {
flag = true;
} else {
if( a[i] == a[i-1] ) {
b[++cnt] = a[i];
flag = false;
}
}
}
double ans = 1e9;
ll x, y;
for( ll i = 1; i < cnt; i ++ ) {
if( ans>(b[i+1]*1.0)/b[i]+(b[i]*1.0)/b[i+1]) {
ans = (b[i+1]*1.0)/b[i]+(b[i]*1.0)/b[i+1];
x = b[i], y = b[i+1];
}
}
cout << x << " " << x << " " << y << " " << y << endl;
}
return 0;
}
CF1027C Minimum Value Rectangle 贪心 数学的更多相关文章
- CF1027C Minimum Value Rectangle【贪心/公式化简】
https://www.luogu.org/problemnew/show/CF1027C #include<cstdio> #include<string> #include ...
- CF1027C Minimum Value Rectangle
之前做的时候没想出来...现在来数学推导一波. 题意:从n个木棒中选出4个拼成一个矩形,使得 (周长)2/面积 最小. 解:设矩形宽a长b.我们要最小化下面这个式子: 去掉常数,不妨设b = a + ...
- [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- 贪心/数学 Codeforces Round #212 (Div. 2) A. Two Semiknights Meet
题目传送门 /* 贪心/数学:还以为是BFS,其实x1 + 4 * k = x2, y1 + 4 * l = y2 */ #include <cstdio> #include <al ...
- LC 963. Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- 【leetcode】963. Minimum Area Rectangle II
题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...
- 963. Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- 【LeetCode】963. Minimum Area Rectangle II 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线段长+线段中心+字典 日期 题目地址:https: ...
- 【CF1027C】Minimum Value Rectangle(贪心,数学)
题意:给定n根木棍,不允许拼接或折断,选择四根组成矩形,求所有合法矩形中周长平方与面积比最小的一个,输出拼成这个矩形的四根木棍 n<=1e6 思路:猜结论:答案必定从相邻的4根中产生 证明见ht ...
随机推荐
- centos6.5-7编译安装Ansible详细部署
一.基础介绍==========================================================================================ansi ...
- [ PyQt入门教程 ] PyQt5基本控件使用:单选按钮、复选框、下拉框
本文主要介绍PyQt5界面最基本使用的单选按钮.复选框.下拉框三种控件的使用方法进行介绍. 1.RadioButton单选按钮/CheckBox复选框.需要知道如何判断单选按钮是否被选中. 2.Com ...
- 【Java笔记】【Java核心技术卷1】chapter3 D5运算符
package chapter3; import java.math.*; //引入数学类 //枚举类型 enum Size{SMALL,MEDIUM,LARGE}; public class D5运 ...
- spring-boot 示例大全
spring-boot-demo Spring Boot 学习示例,将持续更新... 本项目基于spring boot 最新版本(2.1.7)实现 什么是spring-boot Spring Boot ...
- appcan IDE 无法 请求数据
我们4月27号从4.0.1升级到4.0.2后,IDE本地预览get请求不到数据.但是在线打包安装到手机又是正常的. 先下载 "uexXmlHttpMgr.rar",下载链接:htt ...
- 超全的 Vue 开源项目合集,签收一下
超全的 Vue 开源项目合集,签收一下 xiaoge2016 前端开发 1周前 作者:xiaoge2016 链接: https://my.oschina.net/u/3018050/blog/2049 ...
- react-native-gesture-handler报错
安装React Native第三方组件出现Task :react-native-gesture-handler:compileDebugJavaWithJavac FAILED报错,则使用jetifi ...
- 强烈推荐 GitHub 上值得前端学习的开源实战项目
强烈推荐 GitHub 上值得前端学习的开源实战项目. Vue.js vue-element-admin 是一个后台前端解决方案,它基于和 element-ui 实现 基于 iView 的 Vue 2 ...
- 玩转 SpringBoot 2 快速搭建 | IntellJ IDEA篇
IntellJ IDEA 介绍 IntelliJ IDEA 简称 IDEA,目前被认为是最好用的开发Java 语言开发工具之一.不过是收费的.和其同类型的工具有 Eclipse 和 MyEclip ...
- Liunx学习总结(三)--用户和用户组管理
用户和组的基本概念 用户和组是操作系统中一种身份认证资源. 每个用户都有用户名.用户的唯一编号 uid(user id).所属组及其默认的 shell,可能还有密码.家目录.附属组.注释信息等. 每个 ...