Minimum Value Rectangle
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You have nn sticks of the given lengths.

Your task is to choose exactly four of them in such a way that they can form a rectangle. No sticks can be cut to pieces, each side of the rectangle must be formed by a single stick. No stick can be chosen multiple times. It is guaranteed that it is always possible to choose such sticks.

Let SS be the area of the rectangle and PP be the perimeter of the rectangle.

The chosen rectangle should have the value P2SP2S minimal possible. The value is taken without any rounding.

If there are multiple answers, print any of them.

Each testcase contains several lists of sticks, for each of them you are required to solve the problem separately.

Input

The first line contains a single integer TT (T≥1T≥1) — the number of lists of sticks in the testcase.

Then 2T2T lines follow — lines (2i−1)(2i−1) and 2i2i of them describe the ii-th list. The first line of the pair contains a single integer nn (4≤n≤1064≤n≤106) — the number of sticks in the ii-th list. The second line of the pair contains nn integers a1,a2,…,ana1,a2,…,an (1≤aj≤1041≤aj≤104) — lengths of the sticks in the ii-th list.

It is guaranteed that for each list there exists a way to choose four sticks so that they form a rectangle.

The total number of sticks in all TT lists doesn't exceed 106106 in each testcase.

Output

Print TT lines. The ii-th line should contain the answer to the ii-th list of the input. That is the lengths of the four sticks you choose from theii-th list, so that they form a rectangle and the value P2SP2S of this rectangle is minimal possible. You can print these four lengths in arbitrary order.

If there are multiple answers, print any of them.

Example
input

Copy
3
4
7 2 2 7
8
2 8 1 4 8 2 1 5
5
5 5 5 5 5
output

Copy
2 7 7 2
2 2 1 1
5 5 5 5
Note

There is only one way to choose four sticks in the first list, they form a rectangle with sides 22 and 77, its area is 2⋅7=142⋅7=14, perimeter is 2(2+7)=182(2+7)=18. 18214≈23.14318214≈23.143.

The second list contains subsets of four sticks that can form rectangles with sides (1,2)(1,2), (2,8)(2,8) and (1,8)(1,8). Their values are 622=18622=18, 20216=2520216=25 and 1828=40.51828=40.5, respectively. The minimal one of them is the rectangle (1,2)(1,2).

You can choose any four of the 55 given sticks from the third list, they will form a square with side 55, which is still a rectangle with sides (5,5)(5,5).

题意:给你n根木棒,从中挑出四根木棒组成一个矩形,矩形面积为S,周长为P,求使P^2/S最小的四根木棒长度

分析:假设矩形宽为a,长为b,则P^2/S=(2*(a+b))^2/a*b=4*(a*a+2*a*b+b*b)/a*b=4*(2+a/b+b/a)

  即求a/b+b/a的最小值

  a/b+b/a>=2*sqrt(a/b*b/a)=2(当且仅当a/b=b/a时等式成立)

  即当a=b时取最小,a!=b时,a,b越接近值越小

  所以我们先求出所有可以用来做矩形的边,将这些边排序后再枚举求相邻两边a/b+b/a的最小值

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 998244353;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll n, T, cnt, a[maxn], b[maxn];
int main() {
ios::sync_with_stdio(0);
cin >> T;
while( T -- ) {
cnt = 0;
cin >> n;
for( ll i = 1; i <= n; i ++ ) {
cin >> a[i];
}
sort(a+1,a+n+1);
bool flag = false;
for( ll i = 1; i <= n; i ++ ) {
if(!flag) {
flag = true;
} else {
if( a[i] == a[i-1] ) {
b[++cnt] = a[i];
flag = false;
}
}
}
double ans = 1e9;
ll x, y;
for( ll i = 1; i < cnt; i ++ ) {
if( ans>(b[i+1]*1.0)/b[i]+(b[i]*1.0)/b[i+1]) {
ans = (b[i+1]*1.0)/b[i]+(b[i]*1.0)/b[i+1];
x = b[i], y = b[i+1];
}
}
cout << x << " " << x << " " << y << " " << y << endl;
}
return 0;
}

  

CF1027C Minimum Value Rectangle 贪心 数学的更多相关文章

  1. CF1027C Minimum Value Rectangle【贪心/公式化简】

    https://www.luogu.org/problemnew/show/CF1027C #include<cstdio> #include<string> #include ...

  2. CF1027C Minimum Value Rectangle

    之前做的时候没想出来...现在来数学推导一波. 题意:从n个木棒中选出4个拼成一个矩形,使得 (周长)2/面积 最小. 解:设矩形宽a长b.我们要最小化下面这个式子: 去掉常数,不妨设b = a + ...

  3. [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  4. 贪心/数学 Codeforces Round #212 (Div. 2) A. Two Semiknights Meet

    题目传送门 /* 贪心/数学:还以为是BFS,其实x1 + 4 * k = x2, y1 + 4 * l = y2 */ #include <cstdio> #include <al ...

  5. LC 963. Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  6. 【leetcode】963. Minimum Area Rectangle II

    题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...

  7. 963. Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  8. 【LeetCode】963. Minimum Area Rectangle II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线段长+线段中心+字典 日期 题目地址:https: ...

  9. 【CF1027C】Minimum Value Rectangle(贪心,数学)

    题意:给定n根木棍,不允许拼接或折断,选择四根组成矩形,求所有合法矩形中周长平方与面积比最小的一个,输出拼成这个矩形的四根木棍 n<=1e6 思路:猜结论:答案必定从相邻的4根中产生 证明见ht ...

随机推荐

  1. c#小灶——数据类型

    C#中有许多数据类型,存储不同的数据要用不同的数据类型.我们这里面向初学只介绍值类型,引用类型和指针类型在后续的学习中会有接触. 整型 int是最常用的整型,用来存储整数.除了int之外,还有其他不常 ...

  2. 【算法】【排序】【交换类】快速排序QuickSort

    #include<stdio.h> //快速排序 int main(){ ,,,,,,,,}; +; //基准指针 ; //慢指针 int* j=a; //快指针 int QS(int* ...

  3. C#并发实战Parallel.ForEach使用

    前言:最近给客户开发一个伙食费计算系统,大概需要计算2000个人的伙食.需求是按照员工的预定报餐计划对消费记录进行检查,如有未报餐有刷卡或者有报餐没刷卡的要进行一定的金额扣减等一系列规则.一开始我的想 ...

  4. Spring系列(一):Spring核心概念

    一.Spring概念 Spring是一种多层的J2EE应用程序框架,其核心就是管理资源组件以及依赖关系,Spring框架为现代基于java的企业应用程序提供了一个全面的编程和配置模型. 二.Sprin ...

  5. 使用windows powershell ISE管理命令窗口,并集成git命令

    写于2018-09-03(基于win10) 开启 win + s 输入 ise 操作 主要使用新建的power shell选项卡 将git集成到power shell中 安装准备 确定你的power ...

  6. 算法与数据结构基础 - 回溯(Backtracking)

    回溯基础 先看一个使用回溯方法求集合子集的例子(78. Subsets),以下代码基本说明了回溯使用的基本框架: //78. Subsets class Solution { private: voi ...

  7. powerdesign进军(一)--安装破解

    目录 资源下载地址 安装powerdesign 破解powerdesign 汉化 总结 IT行业不管是web开发还是客户端开发都需要数据库,因为现在是数据时代能够拥有强大的数据就是行业的王者.目前一些 ...

  8. Java回收机制概述

    Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区. 垃圾回收机制的 ...

  9. ajax+JQuery实现类似百度智能搜索框

    最近再学习ajax,上课老师让我们实现一个类似百度首页实现搜索框的功能,刚开始做的时候没有一点头绪,查阅大量网上的资源后,发现之前的与我们现在的有些区别,所以在此写出来,希望能对大家有所帮助. 下面先 ...

  10. ES6中。类与继承的方法,以及与ES5中的方法的对比

    // 在ES5中,通常使用构造函数方法去实现类与继承 // 创建父类 function Father(name, age){ this.name = name; this.age = age; } F ...