Python高级应用程序设计任务期末作业
Python高级应用程序设计任务要求
用Python实现一个面向主题的网络爬虫程序,并完成以下内容:
(注:每人一题,主题内容自选,所有设计内容与源代码需提交到博客园平台)
一、主题式网络爬虫设计方案(15分)
1.主题式网络爬虫名称
爬取网易云音乐歌单
2.主题式网络爬虫爬取的内容与数据特征分析
爬取网易云音乐歌单前十页歌单,说唱类型的歌单名称、歌单播放量、歌单链接、用户名称。
分析歌单播放量和歌单标题关键词
3.主题式网络爬虫设计方案概述(包括实现思路与技术难点)
实现思路:使用单线程爬取,初始化信息,设置请求头部信息,获取网页资源,使用etree进行网页解析,爬取多页时刷新offset,将爬取数据保存到csv文件中。
难点:使用的翻页形式为URL的limit和offset参数,发送的get请求时froms和url的参数要一至。
二、主题页面的结构特征分析(15分)
1.主题页面的结构特

2.Htmls页面解析


3.节点(标签)查找方法与遍历方法
(必要时画出节点树结构)

三、网络爬虫程序设计(60分)
爬虫程序主体要包括以下各部分,要附源代码及较详细注释,并在每部分程序后面提供输出结果的截图。
1.数据爬取与采集
from urllib import parse
from lxml import etree
from urllib3 import disable_warnings
import requests
import csv
class Wangyiyun(object): def __init__(self, **kwargs):
# 歌单的歌曲风格
self.types = kwargs['types']
# 歌单的发布类型
self.years = kwargs['years']
# 这是当前爬取的页数
self.pages = pages
# 这是请求的url参数(页数)
self.limit = 35
self.offset = 35 * self.pages - self.limit
# 这是请求的url
self.url = "https://music.163.com/discover/playlist/?" # 设置请求头部信息(可扩展:不同的User - Agent)
def set_header(self):
self.header = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36",
"Referer": "https://music.163.com/",
"Upgrade-Insecure-Requests": '1',
}
return self.header # 设置请求表格信息
def set_froms(self):
self.key = parse.quote(self.types)
self.froms = {
"cat": self.key,
"order": self.years,
"limit": self.limit,
"offset": self.offset,
}
return self.froms # 解析代码,获取有用的数据
def parsing_codes(self):
page = etree.HTML(self.code)
# 标题
self.title = page.xpath('//div[@class="u-cover u-cover-1"]/a[@title]/@title')
# 作者
self.author = page.xpath('//p/a[@class="nm nm-icn f-thide s-fc3"]/text()')
# 阅读量
self.listen = page.xpath('//span[@class="nb"]/text()')
# 歌单链接
self.link = page.xpath('//div[@class="u-cover u-cover-1"]/a[@href]/@href')
# 将数据保存为csv文件
data=list(zip(self.title,self.author,self.listen,self.link))
with open('yinyue.csv','a',encoding='utf-8',newline='') as f:
writer=csv.writer(f)
#writer.writerow(header)
writer.writerows(data)
# 获取网页源代码
def get_code(self):
disable_warnings()
self.froms['cat']=self.types
disable_warnings()
self.new_url = self.url+parse.urlencode(self.froms)
self.code = requests.get(
url = self.new_url,
headers = self.header,
data = self.froms,
verify = False,
).text # 爬取多页时刷新offset
def multi(self ,page):
self.offset = self.limit * page - self.limit if __name__ == '__main__':
# 歌单的歌曲风格
types = "说唱"
# 歌单的发布类型:最热=hot,最新=new
years = "hot"
# 指定爬取的页数
pages = 10
# 通过pages变量爬取指定页面
music = Wangyiyun(
types = types,
years = years,
)
for i in range(pages):
page = i+1 # 因为没有第0页
music.multi(page) # 爬取多页时指定,传入当前页数,刷新offset
music.set_header() # 调用头部方法,构造请求头信息
music.set_froms() # 调用froms方法,构造froms信息
music.get_code() # 获取当前页面的源码
music.parsing_codes() # 处理源码,获取指定数据
2.对数据进行清洗和处理
import pandas as pd
#读取文件
data=pd.read_csv(r"yinyue.csv",encoding = "utf-8")
data.columns=('title','author','listen_num','link')
data

#删除没有万单位的行
data = data[data["listen_num"].str[-1] == "万"]
data

#删除万单位
data['listen_num'] = data['listen_num'].str.strip("万").apply(int)
data

#删除重复值
data=data.drop_duplicates()
data.head()

data.describe()

#按播放数量进行降序排序
data = data.sort_values('listen_num',ascending = False).head(10)
data

3.文本分析(可选):jieba分词、wordcloud可视化
4.数据分析与可视化
(例如:数据柱形图、直方图、散点图、盒图、分布图、数据回归分析等)
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
#绘制柱状图查看top50歌单的播放量分布
plt.hist(data['listen_num'],bins=50)
plt.show()

#绘制直方图查看播放数量的分布
sns.distplot(data['listen_num'])

sns.violinplot(data['listen_num'])

#绘制饼状图
plt.rcParams['font.sans-serif'] = ['SimHei']#解决乱码问题
df_score = data['listen_num'].value_counts() #统计评分情况
plt.title("播放数量占比图") #设置饼图标题
plt.pie(df_score.values,labels = df_score.index,autopct='%1.1f%%') #绘图
#autopct表示圆里面的文本格式,在python里%操作符可用于格式化字符串操作
plt.show()

5.数据持久化
data.to_csv("./wangyiyun.csv")

四、结论(10分)
1.经过对主题数据的分析与可视化,可以得到哪些结论?
①数据分析时爬取的数据比较乱,要经过一个连套的数据清洗。
②数据清洗对数据可视化提供了很大的方便。
③top50歌单播放量大部分集中在1000万左右。
④歌单前十页的说唱类型播放量在1000万到2000万居多。
2.对本次程序设计任务完成的情况做一个简单的小结。
在爬取数据过程中,在解析网页代码时,返回的是空列表,经过检查网页源代码,发现原来我们所提取的元素包含在<iframe>标签内部,这样我们是无法直接定位的,所以必须先切换到iframe中,在爬去过程中小问题很多,到最后爬取到的数据也很“脏”,但是经过数据清洗后,还是可得到一些结论的,经过本次作业中,学习到了必须有耐心和细心,这在往后的码农生涯将会很受用。
Python高级应用程序设计任务期末作业的更多相关文章
- Python高级应用程序设计任务
Python高级应用程序设计任务要求 用Python实现一个面向主题的网络爬虫程序,并完成以下内容:(注:每人一题,主题内容自选,所有设计内容与源代码需提交到博客园平台) 一.主题式网络爬虫设计方案( ...
- Python高级应用程序设计任务要求
Python高级应用程序设计任务要求 用Python实现一个面向主题的网络爬虫程序,并完成以下内容:(注:每人一题,主题内容自选,所有设计内容与源代码需提交到博客园平台) 一.主题式网络爬虫设计方案( ...
- 2016-2017-2 《Java程序设计》预备作业2总结
2016-2017-2 <Java程序设计>预备作业2总结 古希腊学者普罗塔戈说过:「头脑不是一个要被填满的容器,而是一束需要被点燃的火把.」 在对计算机系的学生情况的调查中,我说: 最近 ...
- SDN期末作业验收
作业链接:https://edu.cnblogs.com/campus/fzu/SoftwareDefinedNetworking2017/homework/1585 负载均衡程序 1.github链 ...
- SDN期末作业——负载均衡
作业链接 期末作业 1.负载均衡程序 代码 2.演示视频 地址 3.小组分工 小组:incredible five 构建拓扑:俞鋆 编写程序:陈绍纬.周龙荣 程序调试和视频录制:陈辉.林德望 4.个人 ...
- 老男孩Python高级全栈开发工程师三期完整无加密带课件(共104天)
点击了解更多Python课程>>> 老男孩Python高级全栈开发工程师三期完整无加密带课件(共104天) 课程大纲 1.这一期比之前的Python培新课程增加了很多干货:Linux ...
- 老男孩Python高级全栈开发工程师【真正的全套完整无加密】
点击了解更多Python课程>>> 老男孩Python高级全栈开发工程师[真正的全套完整无加密] 课程大纲 老男孩python全栈,Python 全栈,Python教程,Django ...
- python 高级之面向对象初级
python 高级之面向对象初级 本节内容 类的创建 类的构造方法 面向对象之封装 面向对象之继承 面向对象之多态 面向对象之成员 property 1.类的创建 面向对象:对函数进行分类和封装,让开 ...
- python高级之函数
python高级之函数 本节内容 函数的介绍 函数的创建 函数参数及返回值 LEGB作用域 特殊函数 函数式编程 1.函数的介绍 为什么要有函数?因为在平时写代码时,如果没有函数的话,那么将会出现很多 ...
随机推荐
- 《算法问题实战策略》 BOGGLE
oj地址是韩国网站 连接比较慢 https://algospot.com/judge/problem/read/BOGGLE大意如下 输入输出 输入 URLPM XPRET GIAET XTNZY X ...
- 《移动WEB前端高级开发实践@www.java1234.com.pdf》
HTTP服务器: http-server 3.6.4 利用 Performance API 分析网站性能 页面加载生命周期 4. CSS3 伪类.伪元素, 看https://www.runoob.co ...
- WPF 精修篇 自定义控件
原文:WPF 精修篇 自定义控件 自定义控件 因为没有办法对界面可视化编辑 所以用来很少 现在实现的是 自定义控件的 自定义属性 和自定义方法 用VS 创建自定义控件后 会自动创建 Themes 文件 ...
- PHP面试题大全(值得收藏)
PHP进阶.面试:文档.视频资源点击免费获取 一 .PHP基础部分 1.PHP语言的一大优势是跨平台,什么是跨平台? PHP的运行环境最优搭配为Apache+MySQL+PHP,此运行环境可以在不同操 ...
- idea插件备份
- 英语阅读——Speaking Chinese in America
这篇文章是<新视野大学英语>第四册的第五单元的文章,第一遍英语阅读完后对比中文,发现自己对作者的观点理解有些出入.作者反对的是认为中国说话客套而美国人直接的观点,利用自己的经历表达了中文也 ...
- docker安装完报错:Failed to start docker.service: Unit docker.service is masked
执行 systemctl start docker 报错 Failed to start docker.service: Unit docker.service is masked. 解决 syste ...
- Python笔记:设计模式之观察者模式
观察者模式中的主题对象一般存在着一个其他服务依赖的核心服务,并且维护着其他依赖此核心服务的对象列表(即观察者或监视者列表),当主题对象发生变化时,观察者应该改变自己的状态或者进行某些操作 观察者模式中 ...
- Shell(三):echo、printf、test命令
一.echo 1.显示普通字符串: echo "today is a wonderful day" 这里的双引号可以省略. 2.显示转义字符: echo "\" ...
- RPA之AA
RoboticProcessAutomation(即机器人流程自动化),RPA机器人能够模仿大多数人类用户的行为, 比如可以登录应用程序,移动文件和文件夹,复制和粘贴数据,填写表单,从文档中提取结构化 ...