题意简述

有一个集合,初始为空,你需要写一个数据结构,支持:

  1. 0 x 表示将 \(x\) 加入该集合,其中 \(x\) 为一由 \(\texttt{0} \sim \texttt{9}\) 组成的数字串,长度 \(\leq 50\)。
  2. 1 x 表示查询 \(x\) 是否存在于该集合中,长度总和 \(\leq 8 \times 10^6\)。
  3. 2 x y 表示令数字串 \(x\) 和 \(y\) 纠缠。不保证 \(x\) 和 \(y\) 在集合中。如果 \(\texttt{A}\) 与 \(\texttt{B}\) 纠缠,并且 \(\texttt{BT}\) 在集合中,则认为 \(\texttt{AT}\) 也在集合中。

注意集合中可能有无穷多个数字串。

题目分析

发现,询问时,字符串总是通过不断通过“纠缠”改变前缀,最后来到一个已经插入的字符串。所以,所谓“纠缠”,就是令两个前缀相等的过程。分析到这,如果没有“纠缠”操作,做法是什么?别跟我说字符串哈希。对,看到前缀和字符串匹配,用个 Trie 树匹配就行了。可是有“纠缠”,怎么解决呢?

一个很直接的想法是,分别在字典树上找到这两个前缀对应的结点,然后在结点之间连一条边。在匹配时可以往下匹配,也可以在额外这些边上走。轻松写出如下(赛时)代码:

unordered_map<int, bool> vis[805010];

bool dfs(int now, char str[], int cur) {
if (vis[cur][now]) return false;
vis[cur][now] = true;
for (auto to: tree[now].trans) {
if (dfs(to, str, cur)) return true;
}
if (!str[cur]) {
if (tree[now].ed) return true;
return false;
}
if (tree[now].son[str[cur] ^ 48]) {
if (dfs(tree[now].son[str[cur] ^ 48], str, cur + 1)) {
return true;
}
}
return false;
}

先抛开时间空间不谈,这个算法还是错的,(没拿到一点点分),为什么?

考虑如下数据:

4
2 0 2
2 02 5
0 22
1 5

显然,匹配的过程可以被表示为:\(\texttt{5} \rightarrow \texttt{02} \rightarrow \texttt{22}\)。但是上述代码给出了无解。原因就是我们无法更改已经匹配好的前缀的前缀。

这是一个棘手的问题,但也让我们意识到,字典树上,两个前缀相等,其后代也是等价的。难道我们还要在后代上连边?!当然不是。因为你可能还要不断插入,非常难解决。

不妨换个角度思考,两个前缀相等,以后就不会改变了,不妨把这两个结点以及子树合并起来。也即,后续访问到任意一个点的时候,在合并之后的版本上面操作,这样就可以影响所有合法的节点了。合并起来,做一个映射关系,想到并查集。

这就是并查集合并集合的优势了。当结点之间完全没有区别,与其插入的时候分别插入或查询的时候都扫一遍,不如将其合并起来,后续查询、修改,都在合并出来的节点上进行。

时间复杂度分析

插入查询和并查集都很好分析。合并的时候,每个节点只会被合并一次,并且合并复杂度就是这些结点个数,总和是字典树结点个数,所以是正确的。

代码

#include <cstdio>
#include <iostream>
using namespace std; const int N = 1000010;
const int L = 8000010; struct node {
int son[10];
bool ed;
} tree[N];
int fa[N], tot; inline int newNode() { return ++tot, fa[tot] = tot; } int get(int x) { return fa[x] == x ? x : fa[x] = get(fa[x]); } int insert(char str[], bool real) { // 在线段树上找到 str 对应的结点
int now = 0;
for (int i = 1; str[i]; ++i) {
int &son = tree[now].son[str[i] ^ 48];
if (!son)
son = newNode();
now = son = get(son); // 注意这里访问是合并之后的版本
}
tree[now].ed |= real;
return now;
} bool query(char str[]) { // 查询也是普通地查询
int now = 0;
for (int i = 1; str[i]; ++i) {
int &son = tree[now].son[str[i] ^ 48];
if (!son)
return false;
now = son = get(son); // 同理
}
return tree[now].ed;
} int combine(int u, int v) {
if (!u || !v || u == v) // 合并过、或者有一个不存在了就返回
return u | v;
fa[u] = v;
for (int i = 0; i < 10; ++i) {
int &su = tree[u].son[i];
int &sv = tree[v].son[i];
su = get(su), sv = get(sv);
sv = combine(su, sv), v = get(v); // 注意,可能会影响到 v,所以注意时刻操作合并后的结点
}
tree[v].ed |= tree[u].ed;
return v;
} int n; signed main() {
#ifndef XuYueming
freopen("tarjan.in", "r", stdin);
freopen("tarjan.out", "w", stdout);
#endif
scanf("%d", &n);
for (int i = 1, op; i <= n; ++i) {
static char str[L];
scanf("%d%s", &op, str + 1);
if (op == 0) {
insert(str, true);
} else if (op == 1) {
puts(query(str) ? "1" : "0");
} else {
int x = insert(str, false);
scanf("%s", str + 1);
int y = insert(str, false);
combine(x, y);
}
}
return 0;
}

后记 & 反思

看到前缀和匹配,想到 Trie 树。(谁让它有个名字叫前缀树呢。)

遇到两个结点在之后完全等价,可以使用并查集加速。

Analysis of Set Union Algorithms 题解的更多相关文章

  1. UVa 1329 - Corporative Network Union Find题解

    UVa的题目好多,本题是数据结构的运用,就是Union Find并查集的运用.主要使用路径压缩.甚至不须要合并树了,由于没有反复的连线和改动单亲节点的操作. 郁闷的就是不太熟悉这个Oj系统,竟然使用库 ...

  2. 康复计划#4 快速构造支配树的Lengauer-Tarjan算法

    本篇口胡写给我自己这样的老是证错东西的口胡选手 以及那些想学支配树,又不想啃论文原文的人- 大概会讲的东西是求支配树时需要用到的一些性质,以及构造支配树的算法实现- 最后讲一下把只有路径压缩的并查集卡 ...

  3. 遗传编程(GA,genetic programming)算法初探,以及用遗传编程自动生成符合题解的正则表达式的实践

    1. 遗传编程简介 0x1:什么是遗传编程算法,和传统机器学习算法有什么区别 传统上,我们接触的机器学习算法,都是被设计为解决某一个某一类问题的确定性算法.对于这些机器学习算法来说,唯一的灵活性体现在 ...

  4. 机器学习算法之旅A Tour of Machine Learning Algorithms

    In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...

  5. ICLR 2013 International Conference on Learning Representations深度学习论文papers

    ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...

  6. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  7. 【Repost】A Practical Intro to Data Science

    Are you a interested in taking a course with us? Learn about our programs or contact us at hello@zip ...

  8. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

  9. 313. Super Ugly Number

    题目: Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose ...

  10. Awesome (and Free) Data Science Books[转]

    Post Date: September 3, 2014By: Stephanie Miller Marty Rose, Data Scientist in the Acxiom Product an ...

随机推荐

  1. 17-Docker镜像和容器操作

    镜像 拉取镜像(下载镜像) 镜像是层次型的,拉取的时候会按照各层分别拉取. 每一个镜像都有自己的散列值,用来唯一标记一层镜像,可以用来判断本地是否已经拉取过此镜像层,如果已经拉取,则直接使用. doc ...

  2. 单芯片国产ARM+FPGA,复旦微FMQL20SM工业核心板正式发布!

  3. 使用jsp+servlet+mysql用户管理系统之用户注册-----------使用简单三层结构分析页面显示层(view),业务逻辑层(service),数据持久层(dao)

    View层:jsp+servlet: jsp: <%@ page language="java" contentType="text/html; charset=U ...

  4. AI Agent框架(LLM Agent):LLM驱动的智能体如何引领行业变革,应用探索与未来展望

    AI Agent框架(LLM Agent):LLM驱动的智能体如何引领行业变革,应用探索与未来展望 1. AI Agent(LLM Agent)介绍 1.1. 术语 Agent:"代理&qu ...

  5. JavaScript -- 变量 --手稿

  6. MathType选项灰色无法点击或者word无法粘贴,治本解决方案

    问题描述: mathtype安装过后,word中会出现mathtype的选项,但是这时mathtype中的选项是虚的,无法点击,而且此时word无法粘贴内容. 解决步骤: 1.打开word选项,点击加 ...

  7. Dawwin首位人工智能编程师,未来又会怎么样?

    Darwinai是一家快速发展的视觉质量检测公司,为制造商提供端到端解决方案,以提高产品质量并提高生产效率.该公司的专利可解释人工智能(XAI)平台已被众多财富500强公司采用,可以轻松集成值得信赖的 ...

  8. 万维网WWW

    万维网是一个大规模的联机式信息储存场所,能方便地从一个网络站点访问另一个网络站点.万维网是一个分布式的超媒体系统. 统一资源定位符URL URL表示从互联网上得到的资源位置和访问这些资源的方法,实际上 ...

  9. 从基础到高级应用,详解用Python实现容器化和微服务架构

    本文分享自华为云社区<Python微服务与容器化实践详解[从基础到高级应用]>,作者: 柠檬味拥抱. Python中的容器化和微服务架构实践 在现代软件开发中,容器化和微服务架构已经成为主 ...

  10. ArchLinux Vmware安装指北

    ArchLinux Vmware安装指北 在本文开始之前,首先允许我提前声明一点,Arch Linux的安装并不算难,但是绝对也算不上简单,中间的安装可能会遇到很多问题,本篇文章不能保证完全贴合你的真 ...