【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取
前言
文档分割是一项具有挑战性的任务,它是任何知识库问答系统的基础。高质量的文档分割结果对于显著提升问答效果至关重要,但是目前大多数开源库的处理能力有限。
这些开源的库或者方法缺点大致可以罗列如下:
- 只能处理文本,无法提取表格中的内容
- 缺乏有效的分割策略,要么是一整个文档全部提取,要么是词粒度的获取
对于第一点,一般是把表格中的内容识别成文本,这样喂给大模型的时候就会出现一连串数字或者字母,这无疑会增大模型的理解难度;对于第二点,则是需要按照指定的长度对文档进行切分,或者把词按照一定的规则拼接到一块,这同样会损失到文本自身的上下文信息。
而本文接下来介绍的Open-parse这个库可以直接从文本中提取出多个节点,每个节点就是一个chunk,已经分好了,因此无需再按照长度进行split,这样同时也比单独提取一个词再进行合并又简化了不少操作;同时还支持同时提取表格和文字,无需分开提取。
快速开始
安装
pip install openparse
使用pip进行安装,同时这个库依赖Pymupdf、pdfminer等其他库,也会同时安装。
识别文字
pdf = "c:\\人口.pdf"
parser = openparse.DocumentParser()
parsed_basic_doc = parser.parse(pdf)
for node in parsed_basic_doc.nodes:
node
print('\n--------------------\n')

可以看到每一页的pdf被分成多个chunk,且还能保留原始文本中的加粗、斜体等信息。
print(parsed_basic_doc.nodes[0])
elements=(TextElement(text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 ', lines=(LineElement(bbox=(56.64, 739.57, 232.44, 750.01), spans=(TextSpan(text='Aging Research ', is_bold=True, is_italic=False, size=9.0), TextSpan(text='老龄化研究', is_bold=False, is_italic=False, size=9.0), TextSpan(text=', 2022, 9(3), 26-34 ', is_bold=True, is_italic=False, size=9.0)), style=None, text='Aging Research老龄化研究, 2022, 9(3), 26-34'), LineElement(bbox=(56.65, 728.28, 348.95, 737.28), spans=(TextSpan(text='Published Online September 2022 in Hans. http://www.hanspub.org/journal/ar ', is_bold=False, is_italic=False, size=9.0),), style=None, text='Published Online September 2022 in Hans. http://www.hanspub.org/journal/ar '), LineElement(bbox=(56.64, 717.36, 225.23, 726.36), spans=(TextSpan(text='https://doi.org/10.12677/ar.2022.93004 ', is_bold=False, is_italic=False, size=9.0),), style=None, text='https://doi.org/10.12677/ar.2022.93004 ')), bbox=Bbox(page=0, page_height=807.96, page_width=595.32, x0=56.64, y0=717.36, x1=348.95, y1=750.01), variant=<NodeVariant.TEXT: 'text'>, embed_text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 '),) variant={'text'} tokens=66 bbox=[Bbox(page=0, page_height=807.96, page_width=595.32, x0=56.64, y0=717.36, x1=348.95, y1=750.01)] text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 '
通过打印出node,可以看出这种结构包含了原始文本中的元信息,包含文本的坐标、大小、是否加粗、是否斜体等。
识别表格内容
- Pymupdf
- Unitable
- Table Transformer
openparse提供了三个方法来识别和提取表格中的内容,方法1是直接使用Pymupdf这个库的表格识别模块,因此准确率最差,但对硬件要求不高;其他的2个都是100mb左右的模型,如果用cpu来推理会比较耗时。
# defining the parser (table_args is a dict)
parser = openparse.DocumentParser(
table_args={
"parsing_algorithm": "table-transformers", # 或者其他两个方法
"table_output_format": "html" # 以html格式返回表格内容,也可以选择md
}
)
与前面直接识别文本类似,只需要加入table_args参数即可。

可以看到表格中的内容被很好的还原了
使用表格提取除了返回表格内容外,还会把正常的文本返回,这与
Pymupdf等库只能选择返回文本还是只返回已有的表格不同。因此在不确定文本中含有什么内容时用这个方法会更加保险一点,对硬件的计算要求也不高。
语义相似
from openparse import processing, DocumentParser
semantic_pipeline = processing.SemanticIngestionPipeline(
openai_api_key=OPEN_AI_KEY,
model="text-embedding-3-large",
min_tokens=64,
max_tokens=1024,
)
parser = DocumentParser(
processing_pipeline=semantic_pipeline,
)
openparse还支持端到端的方式对node数据进行向量化并聚类,只需要指定processing_pipeline为相应的embedding模型即可。但是目前仅支持OpenAI的模型,需要OPEN_AI_KEY才可以使用。虽然后续会更新其他模型,但目前想用的话需要自己修改这段代码的实现。
combine_parser = DocumentParser(
processing_pipeline=semantic_pipeline,
table_args={
"parsing_algorithm": "table-transformers",
"table_output_format": "html"
}
)
同时,还能把语义相似和表格内容提取组合到一起使用,实现对表格内容提取的同时还能融合相似的片段。
总结
openparse这个库算是目前开源社区中比较优秀的文档分割处理库了,功能虽然全面,还是还有不少可以优化的地方,后续也会支持其他向量化模型,并且可以跟Llamaindex、Langchain等框架无缝衔接,应该值得持续关注。
【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取的更多相关文章
- 【已解决】phpMyAdmin中导入mysql数据库文件时出错:您可能正在上传很大的文件,请参考文档来寻找解决办法
期间,用phpMyAdmin去导入90M左右的mysql数据库文件时出错: 您可能正在上传很大的文件,请参考文档来寻找解决方法. [解决过程] 1.很明显,是文件太大,无法导入.即上传文件大小有限制. ...
- 百度大脑UNIT3.0解读之对话式文档问答——上传文档获取对话能力
在日常生活中,用户会经常碰到很多复杂的规章制度.规则条款.比如:乘坐飞机时,能不能带宠物上飞机,3岁小朋友是否需要买票等.在工作中,也会面对公司多样的规定制度和报销政策.比如:商业保险理赔需要什么材料 ...
- OneThink视图模型进行组合查询!文档组合文档详情
测试方法:twoCate: public function twoCate(){ $where = array( 'category_id'=>43 ); $list = D('TwoView' ...
- 笔记大神推荐的个人知识文档管理工具mybase
铛铛铛,今天我要给大家推荐一款个人知识笔记管理神器,不出你们所料,它就是mybase. 那mybase究竟能干啥呢?借用mybase中文官网的一句话来说,mybase软件可以将电脑上的文档.知识.笔记 ...
- python3如何随机生成大数据存储到指定excel文档里
本次主要采用的是python3的第三方库xlwt,来创建一个excel文件.具体步骤如下: 1.确认存储位置,文件命名跟随时间格式 2.封装写入格式 3.实现随机数列生成 4.定位行和列把随机数写入 ...
- python实用小技巧自问自答系列(一):查看类中函数文档doc的方法
问题:如何查看某个类的方法文档说明或者是函数的参数列表情况? 答: 方法一:直接在需要查询的方法后面加上".__doc__"即可以打印出该方法的文档说明(需要先导入该方法所属模块) ...
- #Mac技巧#如何在Mac系统上新建TXT文档,以及打开txt文稿的乱码问题如何解决
使用mac的朋友可能都有这样的疑问,mac系统下强大的文本编辑器居然不能保存常用的TXT格式? 又或者打开同事在windows上保存的TXT文件会出现如下情况: 最近Hans也被这些问题困扰着,于是便 ...
- 大数据项目之_15_帮助文档_NTP 配置时间服务器+Linux 集群服务群起脚本+CentOS6.8 升级到 python 到 2.7
一.NTP 配置时间服务器1.1.检查当前系统时区1.2.同步时间1.3.检查软件包1.4.修改 ntp 配置文件1.5.重启 ntp 服务1.6.设置定时同步任务二.Linux 集群服务群起脚本2. ...
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- 基础:从概念理解Lucene的Index(索引)文档模型
转:http://blog.csdn.net/duck_genuine/article/details/6053430 目录(?)[+] Lucene主要有两种文档模型:Document和Fi ...
随机推荐
- golang开发_goroutine在项目中的使用姿势
很多初级的Gopher在学习了goroutine之后,在项目中其实使用率不高,尤其一些跨语言过来的人,对并发编程理解不深入,可能很多人只知道go func(),或者掌控不够,谨慎一些,尽量少使用或者不 ...
- Windows10 windows installer卸载或安装不了软件怎么办?
先说我的方法: 1.把安装出现问题的软件或者想要卸载的软件的安装目录下的所有文件都删除. 2.用清理软件清理一下垃圾,包括注册表,这里我自己使用的是火绒->安全工具- ...
- stm32 fatfs 文件系统分析和代码解析
一 文件系统: 文件系统是操作系统用于明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构:即在存储设备上组织文件的方法.操作系统中负责管理和存储文件信息 ...
- oracle错误之未知的命令开头imp忽略了剩余行解决方案
现象:执行imp命令如下: imp username/password@orcl full=y file=C:\optimove.dmp ignore=y 解决方案: imp 命令是在dos提示符 ...
- buntu中查看网卡信息的基础知识
ubuntunetworkexpress工具网络access Ubuntu 中,通常有线网卡为eth0,无线网卡则为wlan0,后续增加的以此类推(可能某些无线网卡型号命名为eth1,而非wlan0) ...
- Caffe源码编译,win10+vs2015+Ninja,C++接口测试(mnist),Python接口测试(mnist),(坑爹篇)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- TomCat 的 Jenkins 报错:反向代理设置有误
1.进入 Linux 系统的 TomCat 安装目录的 conf 目录 2.编辑 server.xml 3.找到 <Connector> 标签 4.这里的 redirectPort 的值才 ...
- 【LeetCode刷题】239.滑动窗口最大值
239.滑动窗口最大值(点击跳转LeetCode) 给你一个整数数组nums,有一个大小为k的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的k个数字.滑动窗口每次只向右移动一位. ...
- KingbaseES 临时表
临时表在数据库管理和数据处理中有着广泛的应用,主要用于存储临时数据或进行中间计算.临时表中的数据对会话是私有的,每个会话只能看到和修改自己会话的数据. KingbaseES支持本地临时表和全局临时表. ...
- archlinux 格式化分区并创建文件系统后,分区的文件系统没有改变
这就需要格式化分区并创建文件系统后 再执行partprobe应该就可以看到分区的文件系统改变了 partprobe partprobe命令用于通知操作系统重新读取分区表,以便识别新创建的分区或者删除的 ...