Pandas 分组聚合操作详解
Pandas 是 Python 中用于数据分析的重要工具,它提供了丰富的数据操作方法。在数据分析过程中,经常需要对数据进行分组聚合操作。本文将介绍 Pandas 中的数据分组方法以及不同的聚合操作,并结合代码示例进行说明。
读取数据并进行简单分组
首先,我们通过 Pandas 读取 Excel 文件,并使用单个列进行分组,并应用聚合函数。示例代码如下:
df1 = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx')
df = df1.groupby('店铺名称', as_index=False).sum()
print(df)
多列分组及聚合函数应用
接着,我们演示了如何使用多个列进行分组,并应用聚合函数:
df2 = df1.groupby(['店铺名称','订单号'], as_index=False).sum()
print(df2)
自定义聚合函数的应用
在这个示例中,我们定义了一个自定义聚合函数 custom_agg,并将其应用在分组聚合操作中:
def custom_agg(x):
return x.max() - x.min() result = df1.groupby('店铺名称', as_index=False)['销售数量'].agg(custom_agg)
print(result)
同时应用多个聚合函数
我们还可以同时应用多个聚合函数,示例如下:
df3 = df1.groupby('店铺名称', as_index=False).agg({'销售数量': 'sum', '销售金额': 'mean'})
print(df3)
迭代分组
Pandas 支持迭代分组的操作,通过以下示例可以看到迭代分组的效果:
for group, data in df1.groupby('店铺名称'):
print(group) # 分组的键值
print(data) # 所有属于该分组的数据
条件过滤
根据条件过滤分组:
df4 = df1.groupby('店铺名称').filter(lambda x: x['销售金额'].sum() > 300)
print(df4)
转换分组及分组排序
最后,我们演示了分组数据的转换以及分组排序的操作:
df1['NewColumn'] = df1.groupby('店铺名称')['销售数量'].transform(lambda x:x.sum())
print(df1)
排序
df5 = df1.groupby('店铺名称').sum().sort_values('销售数量', ascending=True)
print(df5)
以上就是关于 Pandas 分组聚合操作的详细介绍,通过这些示例代码和解释,相信读者对 Pandas 中的分组聚合操作有了更深入的理解。
总结:在数据分析中,对数据进行分组聚合是一项常见且重要的操作,Pandas 提供了丰富的功能来实现这一目的,包括单列分组、多列分组、自定义聚合函数、迭代分组、数据导出、条件过滤、分组转换以及分组排序等操作,能够满足大部分数据分析需求。
完整代码
import pandas as pd
import numpy as np # 读取两个 Excel 文件
df1 = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx') #使用单个列进行分组,并应用聚合函数
df=df1.groupby('店铺名称', as_index=False).sum()
#df=df1.groupby('店铺名称', as_index=False).aggregate({'销售数量': 'sum'})
print(df) #使用多个列进行分组,并应用聚合函数:
df2=df1.groupby(['店铺名称','订单号'], as_index=False).sum()
print(df2) # 定义自定义聚合函数
def custom_agg(x):
return x.max() - x.min()
# 使用自定义聚合函数对 'Column2' 进行聚合
result = df1.groupby('店铺名称', as_index=False)['销售数量'].agg(custom_agg)
print(result) # 同时应用多个聚合函数
df3=df1.groupby('店铺名称', as_index=False).agg({'销售数量': 'sum', '销售金额': 'mean'})
print(df3) # 迭代分组
for group, data in df1.groupby('店铺名称'):
print(group) # 分组的键值
print(data) # 所有属于该分组的数据 df3.to_excel('merged.xlsx', index=False)
print('这是一条数据分割线') #根据条件过滤分组
df4=df1.groupby('店铺名称').filter(lambda x: x['销售金额'].sum() > 300)
print(df4) #转换分组
df1['NewColumn'] = df1.groupby('店铺名称')['销售数量'].transform(lambda x:x.sum()) # 对 'Column2' 在每个分组内进行转换操作
#df=df1.groupby('店铺名称', as_index=False)['销售数量'].transform('sum')
print(df1) #分组排序
df5=df1.groupby('店铺名称').sum().sort_values('销售数量', ascending=True) # ascending=True 升序 ascending=False 降序
print(df5)
Pandas 分组聚合操作详解的更多相关文章
- Pandas 常见操作详解
Pandas 常见操作详解 很多人有误解,总以为Pandas跟熊猫有点关系,跟gui叔创建Python一样觉得Pandas是某某奇葩程序员喜欢熊猫就以此命名,简单介绍一下,Pandas的命名来自于面板 ...
- Django框架 之 ORM查询操作详解
Django框架 之 ORM查询操作详解 浏览目录 一般操作 ForeignKey操作 ManyToManyField 聚合查询 分组查询 F查询和Q查询 事务 Django终端打印SQL语句 在Py ...
- [Android新手区] SQLite 操作详解--SQL语法
该文章完全摘自转自:北大青鸟[Android新手区] SQLite 操作详解--SQL语法 :http://home.bdqn.cn/thread-49363-1-1.html SQLite库可以解 ...
- MySQL 操作详解
MySQL 操作详解 一.实验简介 本节实验中学习并实践 MySQL 上创建数据库.创建表.查找信息等详细的语法及参数使用方法. 二.创建并使用数据库 1. 创建并选择数据库 使用SHOW语句找出服务 ...
- python/ORM操作详解
一.python/ORM操作详解 ===================增==================== models.UserInfo.objects.create(title='alex ...
- Linq实战 之 DataSet操作详解
Linq实战 之 DataSet操作详解 一:linq to Ado.Net 1. linq为什么要扩展ado.net,原因在于给既有代码增加福利.FCL中在ado.net上扩展了一些方法. 简单一 ...
- nosql Redis命令操作详解
Redis命令操作详解 一.key pattern 查询相应的key (1)redis允许模糊查询key 有3个通配符 *.?.[] (2)randomkey:返回随机key (3)type key: ...
- MongoDB各种查询操作详解
这篇文章主要介绍了MongoDB各种查询操作详解,包括比较查询.关联查询.数组查询等,需要的朋友可以参考下 一.find操作 MongoDB中使用find来进行查询,通过指定find的第一个参数可 ...
- Linux Shell数组常用操作详解
Linux Shell数组常用操作详解 1数组定义: declare -a 数组名 数组名=(元素1 元素2 元素3 ) declare -a array array=( ) 数组用小括号括起,数组元 ...
- shell字符串操作详解
shell字符串操作详解的相关资料. 1.shell变量声明的判断 表达式 含义 ${var} 变量var的值, 与$var相同 ${var-DEFAULT} 如果var没有被声明, 那么就以$DE ...
随机推荐
- Linux 上 KVM 虚拟机网络问题
通过控制台连接虚拟机,ping自己的ip,ping宿主机的ip,ping同网段的ip 1. 自己的ip也不通,先检查网络配置 2. 宿主机的ip不通,就要确认下虚拟机网卡的类型 对于macvlan网卡 ...
- vue3 + ElementPlus 封装函数式弹窗组件
需求场景:弹窗组件需要支持自定义的插槽内容,删除的弹窗也要使用这个组件,只是样式不一样而已,希望在父组件使用删除弹窗的时候直接调用某个方法就可以显示弹窗 组件模拟 cuDialog 假设我的弹窗组件有 ...
- 当 GPT-4 拥有了 Diff 视图,那真的是如虎添翼!
目录 1. 当你要求 GPT-4 帮你写点代码时 2. 你需要的背景知识都在这里 2.1 关于 GoPool 和 DevChat 2.2 关于 GoPool 的工作原理 2.3 我想要让 taskQu ...
- uniapp APP微信登录、支付、分享以及支付宝支付 实战踩坑记录
1.微信支付和支付宝支付 先上代码.封装好了的组件 html部分 <template> <view class="rows"> < ...
- vue中添加音频和视频
视频播放功能 1. 安装vue-video-player npm install vue-video-player --save 或 yarn add vue-video-player --save ...
- 解密Prompt系列14. LLM Agent之搜索应用设计:WebGPT & WebGLM & WebCPM
前两章,我们分别介绍了基于微调和prompt的工具调用方案,核心都是如何让大模型和工具进行交互,包括生成工具调用语句和处理工具调用请求.不过在实际应用中,想要设计一个可以落地的LLM Agent,需要 ...
- 面霸的自我修养:volatile专题
王有志,一个分享硬核Java技术的互金摸鱼侠 加入Java人的提桶跑路群:共同富裕的Java人 今天是<面霸的自我修养>第4篇文章,我们一起来看看面试中会问到哪些关于volatile的问题 ...
- GIS中的ROI文件可否由.xml格式转为.roi格式?
本文介绍在ENVI软件中,将用户自行绘制的.xml格式的感兴趣区(ROI)文件转换为.roi格式的方法. 对于ENVI软件,其在早期版本中,默认将用户所绘制的感兴趣区文件保存为.roi格式:而 ...
- Solution -「CF 724F」Uniformly Branched Trees
Description Link. 给定三个数 \(n,d,mod\),求有多少种 \(n\) 个点的不同构的树满足:除了度数为 \(1\) 的结点外,其余结点的度数均为 \(d\).答案对质数 \( ...
- Solution Set -「ARC 116」(in progress)
「ARC 116A」Odd vs Even Link. 看 \(n\) 有多少 \(2\) 因子. // Problem: A - Odd vs Even // Contest: AtCoder - ...