简单实用算法——二分查找法(BinarySearch)
算法概述
二分查找(英语:binary search),也叫折半查找(英语:half-interval search),是一种在有序数组中查找特定元素的搜索算法。所以,二分查找的前提是数组必须是有序的。
时间复杂度、空间复杂度请参照下图(图片来自wikipedia):
适用情况
二分查找只适用顺序存储结构。为保持表的有序性,在顺序结构里插入和删除都必须移动大量的结点。因此,二分查找特别适用于那种一经建立就很少改动、而又经常需要查找的线性表。
对那些查找少而又经常需要改动的线性表,可采用链表作存储结构,进行顺序查找。链表上无法实现二分查找(更准确的说链表上使用二分查找得不偿失)。
算法原理
二分查找的基本思想是:
- 设R[low…..high]是当前的查找区间。
- 首先确定该区间的中点位置:mid = low + ((high - low) >> 1)。
- 然后将待查的target值与ary[mid]比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找。
- 若ary[mid]>target,则由表的有序性可知ary[mid….high]均大于K,因此若表中存在关键字等于target的结点,则该结点必定是在位置mid左边的子表R[low…mid-1]中,故新的查找区间是左子表ary[low…...mid-1]。
- 若ary[mid]<target,则要查找的target必在mid的右子表ary[mid+1……high]中,即新的查找区间是右子表ary[mid+1……high]。
- 下一次查找是针对新的查找区间进行的。
因此,从初始的查找区间R[0..n-1]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。这一过程重复直至找到关键字为target的结点,或者直至当前的查找区间为空(high<low,即查找失败)时为止。
算法实现(C#)
算法基于C#编写,有简单和泛型两种实现,每种实现又分递归版本、While循环版本。实际运用时,推荐使用While循环版本的二分查找。
算法代码如下:
//此算法假定数组已排序;如果不是这样,则结果将不正确。
class BinarySearch
{
//不要使用mid = (high + low) / 2,可能会导致运算溢出
#region 简单
// 递归版本
public static int Recursive(int[] ary, int target)
{
return Recursive(ary, 0, ary.Length-1, target);
}
static int Recursive(int[] ary, int low, int high, int target)
{
if (high < low) return -1;
int mid = low + ((high - low) >> 1);
if (ary[mid] == target) return mid;
if (ary[mid] > target)
{
return Recursive(ary, low, mid-1, target);
}
else
{
return Recursive(ary, mid + 1, high, target);
}
}
//While循环版本
public static int WhileLoop(int[] ary, int target)
{
int low = 0;
int high = ary.Length - 1;
while (low <= high)
{
int mid = low + ((high - low) >> 1);
if (ary[mid] == target) return mid;
if (ary[mid] > target)
{
high = mid - 1;
}
else
{
low = mid + 1;
}
}
return -1;
}
#endregion
#region 泛型
// 递归版本
public static int RecursiveT<T>(T[] ary, T target) where T : IComparable
{
return RecursiveT(ary, 0, ary.Length - 1, target);
}
static int RecursiveT<T>(T[] ary, int low, int high, T target) where T : IComparable
{
if (high < low) return -1;
int mid = low + ((high - low) >> 1);
int cr = Comparer.Default.Compare(ary[mid], target);
if(cr==0)return mid;
if (cr > 0)
{
return RecursiveT(ary, low, mid - 1, target);
}
else
{
return RecursiveT(ary, mid + 1, high, target);
}
}
//While循环版本
public static int WhileLoopT<T>(T[] ary, T target) where T : IComparable
{
int low = 0;
int high = ary.Length - 1;
while (low <= high)
{
int mid = low + ((high - low) >> 1);
int cr = Comparer.Default.Compare(ary[mid], target);
if (cr == 0) return mid;
if (cr>0)
{
high = mid - 1;
}
else
{
low = mid + 1;
}
}
return -1;
}
//默认情况下推荐使用While循环版本
public static int DefaultT<T>(T[] ary, T target) where T : IComparable
{
return WhileLoopT(ary, target);
}
#endregion
}
测试代码如下:
//数组必须有序
//此处用升序递增的整数数组是为了便于检查结果
int[] ary = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };
long[] aryT = new long[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };
int target = 8;
int r = BinarySearch.Recursive(ary, target);
int w = BinarySearch.WhileLoop(ary, target);
int rT = BinarySearch.RecursiveT(ary, target);
int wT = BinarySearch.WhileLoopT(ary, target);
Console.WriteLine("r={0} w={1} rT={2} wT={3}", r, w, rT, wT);
实际应用:用二分查找法找寻边界值
在集合中找到一个大于(小于)目标数t的数x,使得集合中的任意数要么大于(小于)等于x,要么小于(大于)等于t。
举例来说:给予数组和目标数
int array = {2, 3, 5, 7, 11, 13, 17};
int target = 7;
那么上界值应该是11,因为它“刚刚好”大于7;下界值则是5,因为它“刚刚好”小于7。
该问题不能直接使用二分查找的实现代码解决,需要对代码做一些修改,但解题思路还是二分查找。
实现代码如下:
//用二分查找法找寻上界
static int BSearchUpperBound(int[] ary, int target)
{
int low = 0;
int high = ary.Length - 1;
while (low <= high)
{
int mid = low + ((high - low) >> 1);
if (high == low)
{
if (ary[mid] > target) return mid;
else return -1;
}
if (ary[mid] > target)
{
//当前找到的数大于目标数时,它可能就是我们要找的数,所以需要保留这个索引
high = mid ;
}
else
{
//当前找到的数小于等于目标数时继续向上取区间
low = mid + 1;
}
}
return -1;
}
//用二分查找法找寻下界
static int BSearchLowerBound(int[] ary, int target)
{
int low = 0;
int high = ary.Length - 1;
while (low <= high)
{
//取中间索引时使用向上取整,否则low无法往上爬到下界值
int mid = low + ((high - low + 1) >> 1);
if (high == low)
{
if (ary[mid] < target) return mid;
else return -1;
}
if (ary[mid] >= target)
{
//当前找到的数大于等于目标数时继续向下取区间
high = mid-1;
}
else
{
//当前找到的数小于目标数时,它可能就是我们要找的数,所以需要保留这个索引
low = mid;
}
}
return -1;
}
测试代码如下:
//寻找边界值
int[] array =new int[]{ 2, 3, 5, 7, 11, 13, 17 };
int target =6;
//用二分查找法找寻上届
int up = BSearchUpperBound(array, target);
int lo=BSearchLowerBound(array, target);
参考文章
二分搜索(Binary_Search)——简书
binary search——百度百科
BinarySearch——.NET源码
二分查找BinarySearch原理分析、判定树、及其变种——CSDN
二分查找法的实现和应用汇总——CSDN
简单实用算法——二分查找法(BinarySearch)的更多相关文章
- Java-数据结构与算法-二分查找法
1.二分查找法思路:不断缩小范围,直到low <= high 2.代码: package Test; import java.util.Arrays; public class BinarySe ...
- python算法&二分查找法
import random def random_list(n): result = [] ids = list(range(1001,1001+n)) a1 = ["赵",&qu ...
- js 二分查找法之每日一更
<!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...
- javascript数据结构与算法---检索算法(二分查找法、计算重复次数)
javascript数据结构与算法---检索算法(二分查找法.计算重复次数) /*只需要查找元素是否存在数组,可以先将数组排序,再使用二分查找法*/ function qSort(arr){ if ( ...
- 【C/C++学院】0723-32位与64位/调戏窗体程序/数据分离算法/内存检索/二分查找法/myVC
[送给在路上的程序猿] 对于一个开发人员而言,能够胜任系统中随意一个模块的开发是其核心价值的体现. 对于一个架构师而言,掌握各种语言的优势并能够运用到系统中,由此简化系统的开发,是其架构生涯的第一步. ...
- Java常用排序算法+程序员必须掌握的8大排序算法+二分法查找法
Java 常用排序算法/程序员必须掌握的 8大排序算法 本文由网络资料整理转载而来,如有问题,欢迎指正! 分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排 ...
- 二分查找法&大O表示法
二分查找法的输入是一个有序的元素列表,如果要查找的元素包含在列表中,二分查找返回其位置,否则返回null Python代码(来源于<算法图解>一书): def binary_search( ...
- python 全栈开发,Day15(递归函数,二分查找法)
一.递归函数 江湖上流传这这样一句话叫做:人理解循环,神理解递归.所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛. 递归函数:在一个函数里执行再调用这个函数本身 ...
- C# 快速排序--二分查找法--拉格朗日插值法
1.快速排序 参考自: https://www.cnblogs.com/yundan/p/4022056.html namespace 快速排序算法 { class Program { static ...
- 二分查找法(binary search)
二分查找法:一种在有序列表中查找某个值的算法,它每次都将待查找的空间分为两半,在其中一般继续查找. 使用二分查找的前提是:已经排序好的列表.否则,sum对其查找的结果不做保证. 代码实现: // 使用 ...
随机推荐
- Win32汇编:汇编版PE结构解析器
PE格式是Windows系统下最常用的可执行文件格式,有些应用必须建立在了解PE文件格式的基础之上,如可执行文件的加密与解密,文件型病毒的查杀等,熟练掌握PE文件结构,有助于软件的分析. 在PE文件中 ...
- Java-Stream-flatMap
Leave leave1 = new Leave("1","1",new Date(),CollUtil.newArrayList("A", ...
- Java注解之获取注解内部数据的原因分析
我们都知道从JDK1.5开始,注解开始被支持使用,当我们在使用注解的时候感觉比配置文件用起来更加简便和清爽.配置文件是通过解析配置文件的内容获取到数据,那么为什么仅仅在类.方法或者属性上添加注解被注解 ...
- Intel Arrow Lake处理器还是8+16 24核心:接口换LGA1851
Intel已经确认,将在今年内发布未来两代处理器Arrow Lake.Lunar Lake,其中前者将弥补Meteor Lake的不足,同时用于笔记本.桌面.服务器,现在它的核心规格流出了. 这份曝光 ...
- JQ模糊查询插件
//构造函数写法 ;(function($,window,document,undefined){//注意这里的分号必须加 //插件的全部代码 var FazzSearch = function (e ...
- 在K8S中,节点故障驱逐pod过程时间怎么定义?
在Kubernetes中,节点故障驱逐Pod的过程涉及多个参数和组件的相互作用.以下是该过程的简要概述: 默认设置:在默认配置下,节点故障时,工作负载的调度周期约为6分钟. 关键参数: node-mo ...
- 【奶奶看了都会】ChatGPT3.5接入企业微信,可连续对话
1.连续对话效果 小伙伴们,这周ChatGPT放出大招,开放了GPT3.5的API.说简单点,就是提供了和ChatGPT页面对话一样模型的接口.而之前接的ChatGPT接口都是3.0,并不是真正的Ch ...
- 云计算 - 对象存储服务OSS技术全解
本文全面深入地探讨了对象存储服务(OSS)的核心技术.基础知识和高级功能.从媒体存储到数据备份,再到数据仓库与数据湖,我们不仅解析了OSS在各种应用场景下的关键角色,还深入讨论了其与机器学习.多媒体处 ...
- Java 数字 默认是 Integer类型的问题,System.currentTimeMillis() + (180 * 24 * 60 * 60 * 1000)的问题,剖析、Long + Integer的问题
最终结论: (180 * 24 * 60 * 60) 这种计算表达式在 Java中是默认以 Integer类型来的,若不超过 Integer的最大值则没有问题,若超过则必须用 (180 * 24 * ...
- ASP.NET Core分布式项目实战(oauth密码模式identity server4实现)--学习笔记
任务12:oauth密码模式identity server4实现 密码模式比客户端模式更加严格,需要第三方输入用户名和密码之后才可以访问 API 在 IdentityServerCenter 的 Co ...