发表于 2020-11-29  分类于 Java , Apache , JavaClass , Kafka  Valine: 0

Kafka Consumer API

Kafka 提供了两套 API 给 Consumer

  • The high-level Consumer API
  • The SimpleConsumer API

第一种高度抽象的 Consumer API,它使用起来简单、方便,但是对于某些特殊的需求我们可能要用到第二种更底层的 API。

SimpleConsumer 优势

那么第二种 The SimpleConsumer API 能够帮助我们做哪些事情?

  • 一个消息读取多次
  • 在一个处理过程中只消费 Partition 其中的一部分消息
  • 添加事务管理机制以保证消息被处理且仅被处理一次

SimpleConsumer 弊端

使用 SimpleConsumer 有哪些弊端呢?

  • 必须在程序中跟踪 offset 值
  • 必须找出指定 Topic Partition 中的 lead broker
  • 必须处理 broker 的变动

SimpleConsumer 步骤

使用 SimpleConsumer 的步骤

  1. 从所有活跃的 broker 中找出哪个是指定 Topic Partition 中的 leader broker
  2. 找出指定 Topic Partition 中的所有备份 broker
  3. 构造请求
  4. 发送请求查询数据
  5. 处理 leader broker 变更

命令行获取 topic 信息总量

$ bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list XXX1:9092 --topic topicName1 --time -1
topicName1:2:73454
topicName1:5:73006
topicName1:4:73511
topicName1:1:73493
topicName1:3:73019
topicName1:0:72983 $ bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list XXX1:9092 --topic topicName1 --time -2
topicName1:2:0
topicName1:5:0
topicName1:4:0
topicName1:1:0
topicName1:3:0
topicName1:0:0
 

--time -1 表示要获取指定 topic 所有分区当前的最大位移,**--time -2** 表示获取当前最早位移。

两个命令的输出结果相减便可得到所有分区当前的消息总数。

分区当前的消息总数 = [--time-1] - [--time-2]

相减是因为随着 kafka 的运行,topic 中有的消息可能会被删除,因此 --time -1 的结果其实表示的是历史上该 topic 生产的最大消息数,如果用户要统计当前的消息总数就必须减去 --time -2 的结果。

本例中没有任何消息被删除,故 --time -2 的结果全是 0,表示最早位移都是 0,消息总数等于历史上发送的消息总数。

Java 获取 topic 消息总量

high-level Consumer

The high-level Consumer API 获取 Kafka 指定 topic 的消息总量:

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Properties;
import java.util.stream.Collectors; import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; public class KafkaOffsetTools {
private final static Logger logger = LoggerFactory.getLogger(KafkaOffsetTools.class); public static final String KAFKA_BOOTSTRAP_SERVERS = "XXX1:9092,XXX2:9092,XXX3:9092";
public static final List<String> TOPIC_LIST = Arrays.asList("topicName1","topicName2"); public static void main(String[] args) {
for(String topic: TOPIC_LIST) {
long totolNum = totalMessageCount(topic, KAFKA_BOOTSTRAP_SERVERS);
System.out.println(topic+":"+totolNum);
}
} public static long totalMessageCount(String topic, String brokerList) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", "test-group");
props.put("enable.auto.commit", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); try (KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props)) {
List<TopicPartition> tps = Optional.ofNullable(consumer.partitionsFor(topic))
.orElse(Collections.emptyList())
.stream()
.map(info -> new TopicPartition(info.topic(), info.partition()))
.collect(Collectors.toList());
Map<TopicPartition, Long> beginOffsets = consumer.beginningOffsets(tps);
Map<TopicPartition, Long> endOffsets = consumer.endOffsets(tps); return tps.stream().mapToLong(tp -> endOffsets.get(tp) - beginOffsets.get(tp)).sum();
}
}
}
 

输出结果:

topicName1:5301171
topicName2:439466
 

SimpleConsumer

The SimpleConsumer API 获取 Kafka 指定 topic 的消息总量:

import java.util.Arrays;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap; import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.TopicAndPartition;
import kafka.javaapi.OffsetRequest;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.TopicMetadataResponse;
import kafka.javaapi.consumer.SimpleConsumer; public class KafkaOffsetTools { private final static Logger logger = LoggerFactory.getLogger(KafkaOffsetTools.class); public static final String KAFKA_BOOTSTRAP_SERVERS = "XXX1:9092,XXX2:9092,XXX3:9092";
public static final List<String> TOPIC_LIST = Arrays.asList("topicName1","topicName2"); public static void main(String[] args) {
String[] kafkaHosts = KAFKA_BOOTSTRAP_SERVERS.split(",");
List<String> seeds = Arrays.asList(kafkaHosts);
KafkaOffsetTools kot = new KafkaOffsetTools();
Map<String, Integer> topicNumMap = new HashMap<String, Integer>();
for (String topicName : TOPIC_LIST) {
TreeMap<Integer, PartitionMetadata> metadatas = kot.findLeader(seeds, topicName);
int logSize = 0;
for (Entry<Integer, PartitionMetadata> entry : metadatas.entrySet()) {
int partition = entry.getKey();
String leadBroker = entry.getValue().leader().host();
String clientName = "Client_" + topicName + "_" + partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, entry.getValue().leader().port(), 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer, topicName, partition, kafka.api.OffsetRequest.LatestTime(), clientName);
logSize += readOffset;
if (consumer != null) {
consumer.close();
}
}
topicNumMap.put(topicName, logSize);
}
System.out.println(topicNumMap.toString());
} private TreeMap<Integer, PartitionMetadata> findLeader(List<String> a_seedBrokers, String a_topic) {
TreeMap<Integer, PartitionMetadata> map = new TreeMap<Integer, PartitionMetadata>();
for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
String[] hostAndPort = seed.split(":");
consumer = new SimpleConsumer(hostAndPort[0], Integer.valueOf(hostAndPort[1]), 100000, 64 * 1024, "leaderLookup" + new Date().getTime());
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
TopicMetadataResponse resp = consumer.send(req); List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
map.put(part.partitionId(), part);
}
}
} catch (Throwable e) {
logger.error("Broker [" + seed + "] to find Leader for [" + a_topic + "] Reason: " + e.getMessage(), e);
} finally {
if (consumer != null) {
consumer.close();
}
}
}
return map;
} public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime,
String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request); if (response.hasError()) {
logger.error("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition));
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
}
 

输出结果:

{topicName1=5301171, topicName2=439466}
 
相关文章

[转帖]Java 获取 Kafka 指定 topic 的消息总量的更多相关文章

  1. 关于怎么获取kafka指定位置offset消息(转)

    1.在kafka中如果不设置消费的信息的话,一个消息只能被一个group.id消费一次,而新加如的group.id则会被“消费管理”记录,并指定从当前记录的消息位置开始向后消费.如果有段时间消费者关闭 ...

  2. java获取系统指定时间年月日

    java获取系统指定时间年月日 private String setDateTime(String falg) { Calendar c = Calendar.getInstance(); c.set ...

  3. Kafka Java API获取非compacted topic总消息数

    目前Kafka并没有提供直接的工具来帮助我们获取某个topic的当前总消息数,需要我们自行写程序来实现.下列代码可以实现这一功能,特此记录一下: /** * 获取某个topic的当前消息数 * Jav ...

  4. java api如何获取kafka所有Topic列表,并放置为一个list

    kafka内部所有的实现都是通过TopicCommand的main方法,通过java代码调用API,TopicCommand.main(options)的方式只能打印到控制台,不能转换到一个list. ...

  5. Java 获取字符串指定下标位置的值 charAt()

    Java手册 charAt public char charAt(int index) 返回指定索引处的 char 值.索引范围为从 0 到 length() - 1.序列的第一个 char 值位于索 ...

  6. JAVA获取当前日期指定月份后(多少个月后)的日期

    环境要求:使用jdk1.8 package com.date; import java.text.ParseException; import java.text.SimpleDateFormat; ...

  7. java 获取网页指定内容-2(实践+修改)

    import java.io.BufferedReader; import java.io.InputStreamReader; import java.net.HttpURLConnection; ...

  8. java 获取网页指定内容

    import java.io.BufferedReader; import java.io.InputStreamReader; import java.net.HttpURLConnection; ...

  9. JAVA获取当前日期指定天数之后的日期

    /** * 获取day天之后的日期 * @param day 天数 * @return */ public static String getDate(int day){ Calendar calen ...

  10. 工具篇-Spark-Streaming获取kafka数据的两种方式(转载)

    转载自:https://blog.csdn.net/weixin_41615494/article/details/7952173 一.基于Receiver的方式 原理 Receiver从Kafka中 ...

随机推荐

  1. Blazor快速开发框架Known-V2.0.0

    Known2.0 Known是基于Blazor的企业级快速开发框架,低代码,跨平台,开箱即用,一处代码,多处运行. 官网:http://known.pumantech.com Gitee: https ...

  2. CSS之动画

    一.动画 动画类型 CSS3 可以创建动画,它可以取代许多网页动画图像.Flash 动画和 JavaScript 实现的效果. transform属性可以定义一些主要的动画属性, translate: ...

  3. 3、Container容器组件

    Container容器组件 代码 import 'package:flutter/material.dart'; void main() {   runApp(MaterialApp(     hom ...

  4. java中使用对象储存OSS

    首先获取 ACCESS_KEYSECRET  与  ACCESS_KEYID 获取  ENDPOINT 与 ALI_DOMAIN 与 BUCKET_NAME(存储空间名称) 依赖 <!-- 图片 ...

  5. 如何用AscendCL的接口开发网络模型推理场景下应用?

    摘要:本期我们来深入讲解网络模型推理场景下,具体怎么做. 本文分享自华为云社区<[CANN文档速递09期]应用开发之推理场景>,作者: 昇腾CANN . 我们知道,使用AscendCL接口 ...

  6. Python 绑定:从 Python 调用 C 或 C++

    摘要:您是拥有想要从 Python 中使用的C或 C++ 库的 Python 开发人员吗?如果是这样,那么Python 绑定允许您调用函数并将数据从 Python 传递到C或C++,让您利用这两种语言 ...

  7. Java 日志框架学习笔记

    日志概念 1. 日志文件 日志文件是用于记录系统操作事件的文件集合 1.1 调试日志 1.2 系统日志 系统日志是记录系统中硬件.软件和系统问题的信息,同时还可以监视系统中发生的事件.用户可以通过它来 ...

  8. 动作捕捉系统验证OPT追踪井下无人机的性能

    井下无人机长时间在恶劣环境下执行勘测.救援任务,通讯系统可能会陷入两难的境地--传输高精度坐标伴随着大量耗能.为解决这项难题,中国矿业大学计算机科学和技术学院陈朋朋教授团队提出了一种基于超宽带(UWB ...

  9. Qt 如何配置CLion标准控制台输出?

    CMake 相关问题: 即CMakeLists.txt文件中,在add_executable添加了WIN32.即当使用了WIN32标识后,就去掉了控制台,那么自然就没有信息打印出来了. # for e ...

  10. 高数 | Dirichlet 积分

    在分析学中,Dirichlet 积分 是如下形式的 无穷限积分 \[\int_{0}^{+\infty} \frac{\sin x}{x} \mathrm{~d} x \] 它是条件收敛的,且收敛到 ...