发表于 2020-11-29  分类于 Java , Apache , JavaClass , Kafka  Valine: 0

Kafka Consumer API

Kafka 提供了两套 API 给 Consumer

  • The high-level Consumer API
  • The SimpleConsumer API

第一种高度抽象的 Consumer API,它使用起来简单、方便,但是对于某些特殊的需求我们可能要用到第二种更底层的 API。

SimpleConsumer 优势

那么第二种 The SimpleConsumer API 能够帮助我们做哪些事情?

  • 一个消息读取多次
  • 在一个处理过程中只消费 Partition 其中的一部分消息
  • 添加事务管理机制以保证消息被处理且仅被处理一次

SimpleConsumer 弊端

使用 SimpleConsumer 有哪些弊端呢?

  • 必须在程序中跟踪 offset 值
  • 必须找出指定 Topic Partition 中的 lead broker
  • 必须处理 broker 的变动

SimpleConsumer 步骤

使用 SimpleConsumer 的步骤

  1. 从所有活跃的 broker 中找出哪个是指定 Topic Partition 中的 leader broker
  2. 找出指定 Topic Partition 中的所有备份 broker
  3. 构造请求
  4. 发送请求查询数据
  5. 处理 leader broker 变更

命令行获取 topic 信息总量

$ bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list XXX1:9092 --topic topicName1 --time -1
topicName1:2:73454
topicName1:5:73006
topicName1:4:73511
topicName1:1:73493
topicName1:3:73019
topicName1:0:72983 $ bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list XXX1:9092 --topic topicName1 --time -2
topicName1:2:0
topicName1:5:0
topicName1:4:0
topicName1:1:0
topicName1:3:0
topicName1:0:0
 

--time -1 表示要获取指定 topic 所有分区当前的最大位移,**--time -2** 表示获取当前最早位移。

两个命令的输出结果相减便可得到所有分区当前的消息总数。

分区当前的消息总数 = [--time-1] - [--time-2]

相减是因为随着 kafka 的运行,topic 中有的消息可能会被删除,因此 --time -1 的结果其实表示的是历史上该 topic 生产的最大消息数,如果用户要统计当前的消息总数就必须减去 --time -2 的结果。

本例中没有任何消息被删除,故 --time -2 的结果全是 0,表示最早位移都是 0,消息总数等于历史上发送的消息总数。

Java 获取 topic 消息总量

high-level Consumer

The high-level Consumer API 获取 Kafka 指定 topic 的消息总量:

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Properties;
import java.util.stream.Collectors; import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; public class KafkaOffsetTools {
private final static Logger logger = LoggerFactory.getLogger(KafkaOffsetTools.class); public static final String KAFKA_BOOTSTRAP_SERVERS = "XXX1:9092,XXX2:9092,XXX3:9092";
public static final List<String> TOPIC_LIST = Arrays.asList("topicName1","topicName2"); public static void main(String[] args) {
for(String topic: TOPIC_LIST) {
long totolNum = totalMessageCount(topic, KAFKA_BOOTSTRAP_SERVERS);
System.out.println(topic+":"+totolNum);
}
} public static long totalMessageCount(String topic, String brokerList) {
Properties props = new Properties();
props.put("bootstrap.servers", brokerList);
props.put("group.id", "test-group");
props.put("enable.auto.commit", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); try (KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props)) {
List<TopicPartition> tps = Optional.ofNullable(consumer.partitionsFor(topic))
.orElse(Collections.emptyList())
.stream()
.map(info -> new TopicPartition(info.topic(), info.partition()))
.collect(Collectors.toList());
Map<TopicPartition, Long> beginOffsets = consumer.beginningOffsets(tps);
Map<TopicPartition, Long> endOffsets = consumer.endOffsets(tps); return tps.stream().mapToLong(tp -> endOffsets.get(tp) - beginOffsets.get(tp)).sum();
}
}
}
 

输出结果:

topicName1:5301171
topicName2:439466
 

SimpleConsumer

The SimpleConsumer API 获取 Kafka 指定 topic 的消息总量:

import java.util.Arrays;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap; import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.TopicAndPartition;
import kafka.javaapi.OffsetRequest;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.TopicMetadataResponse;
import kafka.javaapi.consumer.SimpleConsumer; public class KafkaOffsetTools { private final static Logger logger = LoggerFactory.getLogger(KafkaOffsetTools.class); public static final String KAFKA_BOOTSTRAP_SERVERS = "XXX1:9092,XXX2:9092,XXX3:9092";
public static final List<String> TOPIC_LIST = Arrays.asList("topicName1","topicName2"); public static void main(String[] args) {
String[] kafkaHosts = KAFKA_BOOTSTRAP_SERVERS.split(",");
List<String> seeds = Arrays.asList(kafkaHosts);
KafkaOffsetTools kot = new KafkaOffsetTools();
Map<String, Integer> topicNumMap = new HashMap<String, Integer>();
for (String topicName : TOPIC_LIST) {
TreeMap<Integer, PartitionMetadata> metadatas = kot.findLeader(seeds, topicName);
int logSize = 0;
for (Entry<Integer, PartitionMetadata> entry : metadatas.entrySet()) {
int partition = entry.getKey();
String leadBroker = entry.getValue().leader().host();
String clientName = "Client_" + topicName + "_" + partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, entry.getValue().leader().port(), 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer, topicName, partition, kafka.api.OffsetRequest.LatestTime(), clientName);
logSize += readOffset;
if (consumer != null) {
consumer.close();
}
}
topicNumMap.put(topicName, logSize);
}
System.out.println(topicNumMap.toString());
} private TreeMap<Integer, PartitionMetadata> findLeader(List<String> a_seedBrokers, String a_topic) {
TreeMap<Integer, PartitionMetadata> map = new TreeMap<Integer, PartitionMetadata>();
for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
String[] hostAndPort = seed.split(":");
consumer = new SimpleConsumer(hostAndPort[0], Integer.valueOf(hostAndPort[1]), 100000, 64 * 1024, "leaderLookup" + new Date().getTime());
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
TopicMetadataResponse resp = consumer.send(req); List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
map.put(part.partitionId(), part);
}
}
} catch (Throwable e) {
logger.error("Broker [" + seed + "] to find Leader for [" + a_topic + "] Reason: " + e.getMessage(), e);
} finally {
if (consumer != null) {
consumer.close();
}
}
}
return map;
} public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime,
String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request); if (response.hasError()) {
logger.error("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition));
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
}
 

输出结果:

{topicName1=5301171, topicName2=439466}
 
相关文章

[转帖]Java 获取 Kafka 指定 topic 的消息总量的更多相关文章

  1. 关于怎么获取kafka指定位置offset消息(转)

    1.在kafka中如果不设置消费的信息的话,一个消息只能被一个group.id消费一次,而新加如的group.id则会被“消费管理”记录,并指定从当前记录的消息位置开始向后消费.如果有段时间消费者关闭 ...

  2. java获取系统指定时间年月日

    java获取系统指定时间年月日 private String setDateTime(String falg) { Calendar c = Calendar.getInstance(); c.set ...

  3. Kafka Java API获取非compacted topic总消息数

    目前Kafka并没有提供直接的工具来帮助我们获取某个topic的当前总消息数,需要我们自行写程序来实现.下列代码可以实现这一功能,特此记录一下: /** * 获取某个topic的当前消息数 * Jav ...

  4. java api如何获取kafka所有Topic列表,并放置为一个list

    kafka内部所有的实现都是通过TopicCommand的main方法,通过java代码调用API,TopicCommand.main(options)的方式只能打印到控制台,不能转换到一个list. ...

  5. Java 获取字符串指定下标位置的值 charAt()

    Java手册 charAt public char charAt(int index) 返回指定索引处的 char 值.索引范围为从 0 到 length() - 1.序列的第一个 char 值位于索 ...

  6. JAVA获取当前日期指定月份后(多少个月后)的日期

    环境要求:使用jdk1.8 package com.date; import java.text.ParseException; import java.text.SimpleDateFormat; ...

  7. java 获取网页指定内容-2(实践+修改)

    import java.io.BufferedReader; import java.io.InputStreamReader; import java.net.HttpURLConnection; ...

  8. java 获取网页指定内容

    import java.io.BufferedReader; import java.io.InputStreamReader; import java.net.HttpURLConnection; ...

  9. JAVA获取当前日期指定天数之后的日期

    /** * 获取day天之后的日期 * @param day 天数 * @return */ public static String getDate(int day){ Calendar calen ...

  10. 工具篇-Spark-Streaming获取kafka数据的两种方式(转载)

    转载自:https://blog.csdn.net/weixin_41615494/article/details/7952173 一.基于Receiver的方式 原理 Receiver从Kafka中 ...

随机推荐

  1. fstab 简介

    简介 在一般的 Unix 或者 类Unix 中,为了更好地管理磁盘资源,有时不得不挂载一个外部的磁盘,使用 mount 命令可以快速地挂载一个外部磁盘,具体用法为: # 将磁盘分区 sda2 挂载在 ...

  2. cookie的一些知识点总结

    一.cookie的种类 sessionID 这个ID是会话性的,只要关闭了当前浏览器,这个ID会消失,需要调用getSessoin重新获取一个新的session 会话性cookie 这个cookie也 ...

  3. 微信小程序卡片

    1.1 效果 左右滑动 1.2 代码 <view class="container"> <swiper autoplay interval="4000& ...

  4. pytest用例执行顺序

    py文件的执行顺序 pytest默认按字母顺序去执行的(小写英文-->大写英文--->0~9数字) setup_module->setup_claas->setup_funct ...

  5. Linux环境使用Apache部署静态html页面

    Linux环境使用Apache部署静态html页面 安装httpd yum -y install httpd 启动Apache并验证 systemctl start httpd service htt ...

  6. 手把手教你在 Windows 环境中搭建 MQTT 服务器

    前言 前些天要对接一家硬件商的设备数据,对方使用的 MQTT 协议点对点透传,所以又赶紧搭建 MQTT 服务器,写 .NET 程序接收数据等等,今天分享一下如何搭建 MQTT 服务器. MQTT 协议 ...

  7. 如何在 EF Core 中使用乐观并发控制

    什么是乐观并发控制? 乐观并发控制是一种处理并发访问的数据的方法,它基于一种乐观的假设,即认为并发访问的数据冲突的概率很低.在乐观并发控制中,系统不会立即对并发访问的数据进行加锁,而是在数据被修改时, ...

  8. Go--发起HTTP请求

    一.HTTP请求 根据 HTTP 标准,HTTP 请求可以使用多种请求方法.在日常开发中大多数会用到 5 种请求方法: GET.POST.PUT.PATCH 和 DELETE 方法 描述 GET 请求 ...

  9. 如临现场的视觉感染力,NBA决赛直播还能这样看?

    在6月16日结束的NBA总决赛中,勇士4-2击败凯尔特人,问鼎总冠军!今年的NBA总决赛吸引了众多关注,互联网各大平台的赛事直播气氛也异常热烈. 平台如何既能展现专业的赛事解说,又能与球迷观众深入互动 ...

  10. Python | PyQt5 Could not find the Qt platform plugin windows错误解决方法

    在写Python大作业的时候发现运行PyQt5时有报错 出现该问题的原因是环境变量没有添加. 解决方法: 在环境变量中增加: QT_QPA_PLATFORM_PLUGIN_PATH 样例路径(这里填你 ...