sklearn数据集

数据集API介绍

sklearn.datasets

  • 加载获取流行数据集
  • datasets.load_*()
  • 获取小规模数据集,数据包含在datasets里
  • datasets.fetch_*(data_home=None)
  • 获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/

sklearn小数据集

  • sklearn.datasets.load_iris()

    加载并返回鸢尾花数据集

  • sklearn.datasets.load_boston()

    加载并返回波士顿房价数据集

sklearn大数据集

  • sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)

    • subset:'train'或者'test','all',可选,选择要加载的数据集。
    • 训练集的“训练”,测试集的“测试”,两者的“全部”

sklearn数据集的使用

sklearn数据集返回值介绍

  • load和fetch返回的数据类型datasets.base.Bunch(字典格式)如下:
  • data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
  • target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
  • DESCR:数据描述
  • feature_names:特征名,新闻数据,手写数字、回归数据集没有
  • target_names:标签名
def datasets_demo():
"""
sklearn数据集使用
"""
#获取数据集
iris=load_iris()
print("鸢尾花数据集:\n",iris)
print("查看数据集描述:\n",iris.DESCR)
print("查看特征值的名字:\n",iris.feature_names)
print("查看特征值:\n",iris.data,iris.data.shape) #数据集划分
# 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.2,random_state=22)
#训练集的特征值
print("训练集的特征值:\n",x_train,x_train.shape )
# 随机数种子
x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6)
x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6)
print("如果随机数种子不一致:\n", x_train == x_train1)
print("如果随机数种子一致:\n", x_train1 == x_train2)
return None

特征提取

字典特征提取

作用:对字典数据进行特征值化

  • sklearn.feature_extraction.DictVectorizer(sparse=True,…)

    • DictVectorizer.fit_transform(X) X:字典或者包含字典的迭代器返回值:返回sparse矩阵
    • DictVectorizer.inverse_transform(X) X:array数组或者sparse矩阵 返回值:转换之前数据格式
    • DictVectorizer.get_feature_names() 返回类别名称

我们对以下数据进行特征提取

[{'city': '北京','temperature':100}
{'city': '上海','temperature':60}
{'city': '深圳','temperature':30}]
def dict_demo():
"""
对字典类型的数据进行特征抽取
:return: None
"""
data = [{'city': '北京', 'temperature': 100}, {'city': '上海', 'temperature': 60}, {'city': '深圳', 'temperature': 30}]
# 1、实例化一个转换器类
transfer = DictVectorizer(sparse=False)
# 2、调用fit_transform
data = transfer.fit_transform(data)
print("返回的结果:\n", data)
# 打印特征名字
print("特征名字:\n", transfer.get_feature_names())
return None

对于特征当中存在类别信息的我们都会做one-hot编码处理

机器学习1-sklearn&字典特征抽取的更多相关文章

  1. 机器学习总结-sklearn参数解释

    本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...

  2. Python机器学习库sklearn的安装

    Python机器学习库sklearn的安装 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口 ...

  3. 机器学习实战 | SKLearn最全应用指南

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...

  4. 机器学习之sklearn——聚类

    生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征 ...

  5. 【机器学习】SKlearn + XGBoost 预测 Titanic 乘客幸存

    Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv, ...

  6. 吴裕雄 python 机器学习——数据预处理字典学习模型

    from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...

  7. 机器学习之sklearn——EM

    GMM计算更新∑k时,转置符号T应该放在倒数第二项(这样计算出来结果才是一个协方差矩阵) from sklearn.mixture import GMM    GMM中score_samples函数第 ...

  8. 机器学习之sklearn——SVM

    sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...

  9. 机器学习常用sklearn库

    Sklearn.model_selection(模型选择) Cross_val_score:交叉验证 Train_test_split:数据切割 GridsearchCV:网格搜索 Sklearn.m ...

随机推荐

  1. P4267 [USACO18FEB]Taming the Herd

    说实话感觉不是一道蓝题--感觉挺水的,不过为了水题解,水题就够了(其实是觉得思考的过程比较典型,记录一下) 题解 刚开始看这道题感觉上没什么思路,但是我们可以先考虑用 \(O(n)\) 的时间去枚举发 ...

  2. 容器编排系统之Kubernetes基础入门

    一.kubernetes简介 1.什么是kubernetes?它是干什么用的? kubernetes是google公司用go语言开发的一套容器编排系统,简称k8s:它主要用于容器编排:所谓容器编排简单 ...

  3. 【原创】WPF TreeView带连接线样式的优化(WinFrom风格)

    一.前言 之前查找WPF相关资料的时候,发现国外网站有一个TreeView控件的样式,是WinFrom风格的,样式如下,文章链接:https://www.codeproject.com/tips/67 ...

  4. Android studio使用OKGO的POST请求访问http失败的解决方法

    前几天在旧手机(版本是Android7)上调试一个app,用OKGO的post请求连接服务器登录一直很正常.今天旧手机不在身边,用自己的手机调试,就出现网络请求失败的问题,弹onError()里自己写 ...

  5. element Cascader 多选 点击文字选中

    html 部分 1 <el-form-item label="A部署位置" > 2 <el-cascader 3 v-model="itemType.a ...

  6. 精尽Spring MVC源码分析 - HandlerAdapter 组件(三)之 HandlerMethodArgumentResolver

    该系列文档是本人在学习 Spring MVC 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释 Spring MVC 源码分析 GitHub 地址 进行阅读 Spring 版本:5.2. ...

  7. rocketMq 消息偏移量 Offset

    消息偏移量 Offset queue0 offset 0   0-20  offset 4  20-40 纠错:每条消息的tag对应的HashCode. queue1 offset 1  0-20   ...

  8. jmeter流媒体在线播放HLS插件BlazeMeter - HLS Plugin实现视频在线播放压测

    一.前提 近日因工作需要,需对视频在线播放功能进行压测,视频播放使用的是HLS协议,传输内容包括两部分,一是用来控制播放的m3u8文件,二是TS媒体文件.(HLS协议和m3u8详解可参考此链接:htt ...

  9. Gradle AndroidStudio内网离线构建配置踩坑记录

    最近一家新公司,由于办公环境都是在内网机上,导致在Unity导出android工程后,gradle离线构建也是第一次搞,花了一天时间也踩了一些坑,最后也终于构建成功了,这里记录下,方便大家少走些弯路. ...

  10. Python 学习笔记(下)

    Python 学习笔记(下) 这份笔记是我在系统地学习python时记录的,它不能算是一份完整的参考,但里面大都是我觉得比较重要的地方. 目录 Python 学习笔记(下) 函数设计与使用 形参与实参 ...