【BZOJ1426】收集邮票 题解 (期望)
题目:有n种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n。但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱。
现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。
----------------------------------
考虑递推。
设$f[i]$表示取了$i$种邮票,要取完剩下邮票的期望次数。显然$f[n]=0$。有$\frac{i}{n}$的概率是取到已经取过的,期望是$\frac{i}{n}*f[i]$,有$\frac{n-i}{n}$的概率取到没取过的,期望是$\frac{n-i}{n}*f[i+1]$。这一次取过后次数+1。所以$f[i]=\frac{i}{n}*f[i]+\frac{n-i}{n}*f[i+1]+1$。化简一下:$f[i]=f[i+1]+\frac{n}{n-i}$。
设$g[i]$表示已经取了$i$种邮票,要取完剩下的邮票的期望金钱。显然$g[n]=0$。有$\frac{i}{n}$的概率是取到已经取过的,期望是$\frac{i}{n}*(g[i]+f[i]+1)$。有$\frac{n-i}{n}$的概率取到没取过的,期望是$\frac{n-i}{n}*(g[i+1]+f[i+1]+1)$。化简后就是$g[i]=\frac{i}{n-i}*f[i]+g[i+1]+f[i+1]+\frac{n}{n-i}$。
顺便一提:期望DP的定义一般是“已经……还需要……的期望”。
代码:
#include<bits/stdc++.h>
using namespace std;
int n;
double f[],g[];
int main()
{
cin>>n;
for (int i=n-;i>=;i--) f[i]=f[i+]+(double)n/(double)(n-i);
for (int i=n-;i>=;i--) g[i]=(double)i/(double)(n-i)*f[i]+g[i+]+f[i+]+(double)n/(double)(n-i);
printf("%.2lf",g[]);
return ;
}
【BZOJ1426】收集邮票 题解 (期望)的更多相关文章
- 2018.08.31 bzoj1426 收集邮票(期望dp)
描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以 ...
- bzoj1426: 收集邮票(期望)
推错半天式子T T 设f[i]为买了i种卡,期望再买几张有n种卡 设g[i]为买了i种卡,期望再花多少钱有n种卡 可以把当前买卡的价格看作1,则以后买的所有卡片要增加1元,于是要加上f[i]和f[i+ ...
- bzoj 1426: 收集邮票【期望dp】
我太菜了,看的hzwer的blog才懂 大概是设f[i]表示已经拥有了i张邮票后期望还要买的邮票数,这个转移比较简单是f[i]=f[i]*(i/n)+f[i+1]*((n-i)/n)+1 然后设g[i ...
- Bzoj1426 收集邮票
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 292 Solved: 232 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一 ...
- BZOJ 1426: 收集邮票 数学期望 + DP
Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...
- 嘴巴题7 BZOJ1426: 收集邮票
Time Limit: 1 Sec Memory Limit: 162 MB Submit: 546 Solved: 455 [Submit][Status][Discuss] Description ...
- BZOJ 1426: 收集邮票 [DP 期望 平方]
传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮 ...
- [P4550] 收集邮票 - 概率期望,dp
套路性地倒过来考虑,设\(f[i]\)表示拥有了\(i\)种票子时还需要多少次购买,\(g[i]\)表示还需要多少钱 推\(g[i]\)递推式时注意把代价倒过来(反正总数一定,从顺序第\(1\)张开始 ...
- 【BZOJ1426】收集邮票 期望
[BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...
随机推荐
- day14总结
装饰器 """1.什么是装饰器 器指的是工具/功能 装饰指的是为被装饰对象添加额外的功能 大白话:定义装饰器就是定义了一个函数,该函数就是用来为其他函数添加额外的功能的 ...
- 执行ArrayList的remove(object)方法抛异常?
简介 或许有很多小伙伴都尝试过如下的代码: ArrayList<Object> list = ...; for (Object object : list) { if (条件成立) { l ...
- 卸载wsl子系统
1>在powershell中输入下面的代码 wslconfig /l #显示出你安装的列表. wslconfig /u debian #debian为上述列表中的名字 注销子系统 2>打开 ...
- MCU 51-3定时器
51定时/计数器简介 51单片机有2个16位定时器/计数器:定时器0(T0为P3.4)和定时器1(T1为P3.5).这里所说的16位是指定时/计数器内部分别有16位的计数寄存器. 当工作在定时模式时, ...
- Python面向对象05 /私有成员、类方法、静态方法、属性、isinstance/issubclass
Python面向对象05 /私有成员.类方法.静态方法.属性.isinstance/issubclass 目录 Python面向对象05 /私有成员.类方法.静态方法.属性.isinstance/is ...
- Unity-Editor
Undo.RecordObject [MenuItem("Example/Random Rotate")] static void RandomRotate() { var tra ...
- java中AQS源码分析
AQS内部采用CLH队列.CLH队列是由节点组成.内部的Node节点包含的状态有 static final int CANCELLED = 1; static final int SIGNAL ...
- html命名规则
CSS样式命名 外套 wrap ------------------用于最外层 头部 header ----------------用于头部 主要内容 main ------------用于主体内容( ...
- PHP常见的十个安全问题
相对于其他几种语言来说, PHP 在 web 建站方面有更大的优势,即使是新手,也能很容易搭建一个网站出来.但这种优势也容易带来一些负面影响,因为很多的 PHP 教程没有涉及到安全方面的知识. 此帖子 ...
- CSS过渡时间
CSS过渡时间 基础知识 在了解CSS过渡时间之前,你应该先了解一下CSS的变形动画,可以参考之前的一篇博客. 我们的元素在属性发生变化时,如果没有特地的为它设置过渡时间,整个变化过程其实是以毫秒级别 ...