FJOI2020 D1T2


题目大意

给出一个由 $n$ 个点 $m$ 条边构成的染色无向图,求删去每一个点及与其相连的边后图中不连通的同色点对数量。$n,m\leq 10^5$。

思路分析

可以想到先统计原图的答案,然后对删去每个点后的多出的答案进行计算,输出时加上即可。

原图的答案很容易统计,遍历一遍同时计算即可。

如何统计删去每个点后多出的答案?模拟过后很容易发现,多出的答案就是删去这个点后断开的连通块之间形成的同色点对,只需要知道断开后每个连通块的各色点的数量即可。暴力统计显然复杂度太高,连最低档的分都拿不到。毒瘤FJOI

可以想到用 tarjan 找删去后的各个连通块,统计用启发式合并或线段树合并。线段树合并实现简单但是空间较大,但是还是有神犇卡过去了。这里用的是线段树合并。

合并的时候怎么计算呢?

设当前已合并的连通块该颜色的点数和为 $x$ ,原连通块该颜色的点数为 $y$ ,那么遍历一个新的连通块时,设该连通块该颜色的点数为 $z$ ,则将该连通块合并后与其它部分断开后的贡献为为 $z*(y-x-z)+x*(y-x-z)=(x+z)(y-x-z)$ 。注意,若该连通块与原连通块之间会被断掉产生多出的答案,则需要加上 $x*z$ 。

注意,上面的原连通块断开后即为当前节点的父节点所在的连通块。

这样这道题就很好解了。对于原图中的每个连通块:

1. 先遍历一遍,计算出连通块中每个颜色的点数
2. 跑一遍 tarjan ,同时合并数据,计算断开连通块中的每个点后多出的答案
3. 再遍历一遍,计算连通块与原图的其它连通块贡献的答案,然后将当前连通块的数据清空

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=5e5+100;
struct Seg
{
int lson,rson;
ll val,sumv;
#define lson(i) t[i].lson
#define rson(i) t[i].rson
#define val(i) t[i].val
#define sumv(i) t[i].sumv
}t[N*21];
int n,m,tot,cnt,D;
ll now,sum;
int head[N],ver[2*N],Next[2*N];
int rt[N],c[N],nowc[N],sumc[N],dfn[N],low[N];
ll ans[N];
bool vp[N],vq[N];
void add(int x,int y)
{
ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
ver[++tot]=x,Next[tot]=head[y],head[y]=tot;
}
void change(int &p,int l,int r,int k)
{
if(!p)
p=++cnt;
if(l==r)
{
val(p)++,sumv(p)+=nowc[l]-1;
return ;
}
int mid=l+r>>1;
if(k<=mid)
change(lson(p),l,mid,k);
else
change(rson(p),mid+1,r,k);
sumv(p)=sumv(lson(p))+sumv(rson(p));
}
int merge(int x,int y,int l,int r)
{
if(!x)
return y;
if(!y)
return x;
if(l==r)
{
sumv(x)=(val(x)+val(y))*(nowc[l]-val(x)-val(y));//断开后的答案
now+=val(x)*val(y);//当前合并的两个连通块断开的贡献
val(x)+=val(y);
return x;
}
int mid=l+r>>1;
lson(x)=merge(lson(x),lson(y),l,mid);
rson(x)=merge(rson(x),rson(y),mid+1,r);
sumv(x)=sumv(lson(x))+sumv(rson(x));
return x;
}
void pre(int x)
{
vp[x]=1;nowc[c[x]]++;
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(!vp[y])
pre(y);
}
}//先遍历一遍,计算出连通块中每个颜色的点数
void tarjan(int x)
{
int nowr=0;//临时根
low[x]=dfn[x]=++cnt;
change(rt[x],1,D,c[x]);
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(!dfn[y])
{
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x])//断开会使连通块断开,类似割点
{
now=0;
rt[x]=merge(rt[x],rt[y],1,D);
ans[x]+=now;//多出的答案
}
else
nowr=merge(nowr,rt[y],1,D);//不会断开,合并到临时根上,避免多统计答案
}
else
low[x]=min(low[x],dfn[y]);
}
ans[x]+=sumv(rt[x]);
rt[x]=merge(rt[x],nowr,1,D);//合并临时根
}//跑一遍 tarjan ,同时合并数据,计算断开连通块中的每个点后多出的答案
void query(int x)
{
vq[x]=1;
sum+=nowc[c[x]]*sumc[c[x]];//计算当前连通块与其它连通块的贡献
sumc[c[x]]+=nowc[c[x]],nowc[c[x]]=0;
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(!vq[y])
query(y);
}
}//再遍历一遍,计算当前连通块与原图的其它连通块贡献的答案,然后将当前连通块的数据清空
int main()
{
//freopen("pair.in","r",stdin);
//freopen("pair.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&c[i]),D=max(D,c[i]);
for(int i=1,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
pre(i),tarjan(i),query(i);
for(int i=1;i<=n;i++)
printf("%lld\n",sum+ans[i]);
return 0;
}

[FJOI2020]染色图的联通性问题 题解的更多相关文章

  1. tarjan算法,一个关于 图的联通性的神奇算法

    一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly ...

  2. FJOI2020 游记

    Day -1 啥都不会,药丸 看了看统考题,好难,爆零的节奏 文化课OI双爆炸 尽力吧 Day 0 花三个多小时才到考场 福州真的好热 签到 在小礼堂待了一会,顺便给手机充了电 四点试机,今年用了新系 ...

  3. 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)

    洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...

  4. 题解 P1682 【过家家】

    P1682 过家家 题目描述 有2n个小学生来玩过家家游戏,其中有n个男生,编号为1到n,另外n个女生,编号也是1到n.每一个女生可以先选择一个和她不吵嘴的男生来玩,除此之外,如果编号为X的女生的朋友 ...

  5. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  6. bzoj2958: 序列染色(DP)

    2958: 序列染色 题目:传送门 题解: 大难题啊(还是我太菜了) %一发大佬QTT 代码: #include<cstdio> #include<cstring> #incl ...

  7. [专题总结]矩阵树定理Matrix_Tree及题目&题解

    专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...

  8. tarjan算法讲解。

    tarjan算法讲解.   全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这个,读完一遍,发现原来tarjan这么简单! tarjan算法,一个关 ...

  9. Tarjan的缩点&&割点概述

    What is Tarjan? Tarjan,是一种用来解决图的联通性的一种有效途径,它的一般俗称叫做:缩点.我们首先来设想一下: 如果我们有一个图,其中A,B,C构成一个环,那么我们在某种条件下,如 ...

随机推荐

  1. PHP is_finite() 函数

    实例 判断一个值是否为有限值: <?phpecho is_finite(2) . "<br>";echo is_finite(log(0)) . "&l ...

  2. P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数

    LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...

  3. 剑指 Offer 57 - II. 和为s的连续正数序列

    本题 题目链接 题目描述 我的题解 方法三双100%, 方法一 适合范围广 方法一:双指针(也叫 滑动窗口) 思路分析 用两个指针i和表示当前枚举到的以i为起点,j为终点的区间,sum表示[i,j]的 ...

  4. windows:shellcode 远程线程hook/注入(四)

    https://www.cnblogs.com/theseventhson/p/13236421.html  这里介绍了利用回调函数执行shellcode的基本原理:这里介绍另外一种利用回调执行she ...

  5. mac 教你如何在Mac上搭建自己的服务器——Nginx

    WHAT 本篇主要是基于Nginx在Mac上搭建自己的服务器. 我相信很多朋友肯定是第一次听到Nginx,关于它具有怎样的传奇,这儿肯定说不完也说不透. 有兴趣的朋友可以自行google或者baidu ...

  6. ORACLE常用语句:

    ORACLE常用语句: 1.首先,创建(新)用户: create user username identified by password; username:新用户名的用户名 password: 新 ...

  7. 033_go语言中的打点器

    代码演示 package main import "fmt" import "time" func main() { ticker := time.NewTic ...

  8. javascript Array对象笔记

    Array对象     利用new Array()     var arr1=new Array(1,2)     注意     如果括号里面只有一个数字则表示的是数组的长度     检测是否是数组 ...

  9. Zabbix5 Frame 嵌套

    Zabbix5 Frame 嵌套 Zabbix 默认不允许嵌套在其他页面上,通过修改配置允许嵌套 找到 Zabbix 下面的 include/defines.inc.php 文件,末尾有一行 defi ...

  10. C#LeetCode刷题之#674-最长连续递增序列( Longest Continuous Increasing Subsequence)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3734 访问. 给定一个未经排序的整数数组,找到最长且连续的的递增 ...