Codeforces Round #646 (Div. 2) B. Subsequence Hate (思维,前缀和)

题意:给你一个只含有\(0\)和\(1\)的字符串,每次操作可以将\(0\)改成\(1\)或\(1\)改成\(0\),问最少操作多少次,使得子序列中不含有\(010\)和\(101\).
题解:仔细想一想不难发现,构造后的字符串要么全是\(1\)和\(0\),要么就是\(000....111\)和\(111...000\),我们对\(0\)求一个前缀和,判断一下这些情况,更新最小值即可.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL; int t;
int pre[N];
string s; int main() {
ios::sync_with_stdio(false);cin.tie(0);
cin>>t;
while(t--){
cin>>s;
s=" "+s;
me(pre,0,sizeof(pre));
int len=s.size();
int cnt0=0,cnt1=0;
for(int i=1;i<len;++i){
if(s[i]=='0'){
cnt0++;
pre[i]=pre[i-1]+1;
}
else{
cnt1++;
pre[i]=pre[i-1];
}
}
int ans=min(cnt0,cnt1);
for(int i=1;i<len;++i){
ans=min(ans,pre[i]+(len-1-i-(pre[len-1]-pre[i])));
}
for(int i=1;i<len;++i){
ans=min(ans,i-pre[i]+pre[len-1]-pre[i]);
}
printf("%d\n",ans);
} return 0;
}
Codeforces Round #646 (Div. 2) B. Subsequence Hate (思维,前缀和)的更多相关文章
- Codeforces Round #646 (Div. 2) B. Subsequence Hate(前缀和)
题目链接:https://codeforces.com/contest/1363/problem/B 题意 可以将 $01$ 串中的 $0$ 变为 $1$.$1$ 变为 $0$,问至少需要变换多少字符 ...
- Codeforces Round #297 (Div. 2)B. Pasha and String 前缀和
Codeforces Round #297 (Div. 2)B. Pasha and String Time Limit: 2 Sec Memory Limit: 256 MBSubmit: xxx ...
- Codeforces Round #646 (Div. 2)【B. Subsequence Hate题解】
具体思路已经在代码注释中给出,这里不再赘述. #include<iostream> #include<algorithm> using namespace std; int t ...
- Codeforces Round #646 (Div. 2) 题解 (ABCDE)
目录 A. Odd Selection B. Subsequence Hate C. Game On Leaves D. Guess The Maximums E. Tree Shuffling ht ...
- Codeforces Round #646 (Div. 2) E. Tree Shuffling(树上dp)
题目链接:https://codeforces.com/contest/1363/problem/E 题意 有一棵 $n$ 个结点,根为结点 $1$ 的树,每个结点有一个选取代价 $a_i$,当前 $ ...
- Codeforces Round #646 (Div. 2) C. Game On Leaves(树上博弈)
题目链接:https://codeforces.com/contest/1363/problem/C 题意 有一棵 $n$ 个结点的树,每次只能取叶子结点,判断谁能最先取到结点 $x$ . 题解 除非 ...
- Codeforces Round #646 (Div. 2) A. Odd Selection(数学)
题目链接:https://codeforces.com/contest/1363/problem/A 题意 判断是否能从 $n$ 个数中选 $x$ 个数加起来和为奇数. 题解 首先 $n$ 个数中至少 ...
- Codeforces Round #646 (Div. 2)【C. Game On Leaves 题解】
题意分析 关于这道题,意思就是两个人摘叶子,谁最后摘到编号为x的谁就赢了.既然是叶子,说明其最多只有一个分支,由于题目上说了是无向图,那就是度数小于等于的节点.也就是一步步移除度数小于等于的节点,直到 ...
- Codeforces Round #646 (Div. 2) C、Game On Leaves
题目链接:C.Game On Leaves 题意: 给你一个n个节点的无根树,你每次可以删除一个叶节点.如果谁先删除x号节点谁就赢了.两个人轮流操作 题解: 如果x号节点本身就是一个叶节点,那么谁先走 ...
随机推荐
- 温故而知新--day2
温故而知新--day2 类 类与对象 类是一个抽象的概念,是指对现实生活中一类具有共同特征的事物的抽象.其实列化后称为对象.类里面由类属性组成,类属性可以分为数据属性和函数属性(函数属性又称为类方法) ...
- paramunittest参数化测试基础
samples: import paramunittestimport unittest@paramunittest.parametrized( (10,20), (30,40), # (100,20 ...
- maven生命周期与插件
目录 Maven生命周期 clean default site 命令与对应周期 插件与绑定 插件目标 插件绑定 内置绑定 自定义绑定 插件配置 本文主要是针对<maven实战>书中关键知识 ...
- MSDOS(MBR)和GPT磁盘分区表
MBR和GPT分区 MBR分区:以磁盘的第一个扇区(512byte)记录分区表,其中,446byte存储开机管理程序(MBR 主要开机记录),64byte用于存放分区表 分区实际上是对分区表的修改 M ...
- 【老孟Flutter】如何提高Flutter应用程序的性能
首先 Flutter 是一个非常高性能的框架,因此大多时候不需要开发者做出特殊的处理,只需要避免常见的性能问题即可获得高性能的应用程序. 重建最小化原则 在调用 setState() 方法重建组件时, ...
- Hadoop 专栏 - MapReduce 入门
MapReduce的基本思想 先举一个简单的例子: 打个比方我们有三个人斗地主, 要数数牌够不够, 一种最简单的方法可以找一个人数数是不是有54张(传统单机计算); 还可以三个人各分一摞牌数各自的(M ...
- DOCKER 安装步骤-最靠谱的笔记
一.系统环境规划 服务器名 项目名称 docker 操作系统 CentOS Linux release 7.1.1503 (Core) Docker 版本 17.03.2-ce 二.Docker ...
- 1V升压5V和1.5V升压5V的集成电路芯片
1.5V和1V输入,要升压输出5V的集成电路芯片合适? 干电池标准电压是1.5V,放电电压后面在0.9V-1V左右,如果要选用干电池1.5V升压到5V的合适的芯片,需要满足低压1V或者0.9V更好的低 ...
- 1.8V转3V,1,8V转3.3V电源芯片的规格书参数
1.8V电平如何稳压稳定输出3V或者3.3V,就需要用到1.8V转3V,1,8V转3.3V电源芯片,就PW5100(低功耗,外围简单),PW5200A是可调输出电压,可以输出电压根据外围电阻来设置命令 ...
- 【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
任务描述 本次集中介绍使用Windows和Linux()搭建本地Redis服务器的步骤,从备份的RDB文件中加载数据,以及如何生成AOF文件和通过AOF文件想已经运行的Redis追加数据. 操作步骤 ...