题目

给定一具有N个顶点(从1到N编号)的凸多边形,每个顶点的权均已知。问如何把这个凸多边形划分成N-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?

输入

第一行 顶点数N(N<50)。 第二行 N个顶点(从1到N)的权值,权值为小于32768的整数。

输出

第一行为各三角形顶点的权的乘积之和最小值。

样例

样例输入

5

121 122 123 245 231

样例输出

12214884

思路

我们可以假设某个三角形在最优解的情况下,那么在遍历长度的情况下,枚举左端点,从而推出右端点,进而枚举断电,将整个凸多边形分成三部分,即f[i][j]=min(f[i][j],f[i][k]+f[k][j]+a[k]a[i]a[j]),从而求出最小价值(需要注意的是当发f[i][j]==0时,应当直接取后者值)

代码



#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=50+5;
int n;
ll a[maxn],f[maxn][maxn];
int main(){
//freopen("1.in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%lld\n",&a[i]);
for(int i=1;i+2<=n;++i)f[i][i+2]=a[i]*a[i+1]*a[i+2];
for(int d=3;d<=n;++d){
for(int i=1;i+d-1<=n;++i){
int j=i+d-1;
for(int k=i+1;k<j;++k){
if(f[i][j])f[i][j]=min(f[i][j],f[i][k]+f[k][j]+a[k]*a[i]*a[j]);
else f[i][j]=f[i][k]+f[k][j]+a[k]*a[i]*a[j];
}
}
}
printf("%lld\n",f[1][n]);
return 0;
}

区间DP之凸多边形的三角剖分的更多相关文章

  1. Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)

    题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP能够非常方便解决,多边形可能是凹边形, ...

  2. 动态规划——区间dp

    在利用动态规划解决的一些实际问题当中,一类是基于区间上进行的,总的来说,这种区间dp是属于线性dp的一种.但是我们为了更好的分类,这里仍将其单独拿出进行分析讨论. 让我们结合一个题目开始对区间dp的探 ...

  3. 区间DP(超详细!!!)

    一.问题 给定长为n的序列a[i],每次可以将连续一段回文序列消去,消去后左右两边会接到一起,求最少消几次能消完整个序列,n≤500. f[i][j]表示消去区间[i,j]需要的最少次数. 则; 若a ...

  4. 区间DP小结

    也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...

  5. ZOJ 3537 Cake(凸包+区间DP)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...

  6. ZOJ 3537 Cake 求凸包 区间DP

    题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...

  7. 区间DP 青蛙的烦恼

    池塘中有n片荷叶恰好围成了一个凸多边形,有一只小青蛙恰好站在1号荷叶上,小青蛙想通过最短的路程遍历所有的荷叶(经过一个荷叶一次且仅一次),小青蛙可以从一片荷叶上跳到另外任意一片荷叶上. 输入数据(fr ...

  8. 区间DP 等腰三角形

    题目描述:给定一个正N边形,可以通过连线将这个多边形分割成N-2个三角形,问这N-2个三角形中恰有k个等腰三角形的分割方法有多少?这个值可能很大,输出对9397取模的结果.数据范围:n,k <= ...

  9. 动态规划 之 区间DP练习

    前言 \(Loj\) 放上了那么多<信息学奥赛一本通>上的题(虽然我并没有这本书),我要给它点一个大大的赞 ^_^ 以后分类刷题不愁啦! 正文 那就一道道说吧. 石子合并 将 \(n\) ...

随机推荐

  1. python—面向对象设计

    一:三大编程范式 1.面向过程编程 2.函数式编程 3.面向对象编程 (类:把一类事物的相同的特征和动作整合到一起就是类,类是一个抽象的概念) (对象:就是基于类而创建的一个具体的事物 [具体存在的] ...

  2. 浅谈Unity的脚本执行顺序

    一.添加脚本的顺序 这是一张官方的脚本顺序图 一般,当我们把脚本绑定在游戏对象上时,或者点击绑定好的脚本的reset按钮时,会调用Reset() 当我们初始化一个对象时,会先调用Awake()在调用O ...

  3. 关于mysql auto-increment

    创建表语句如下mysql> show create table Tautoincrement\G *************************** 1. row ************* ...

  4. protected关键字对父子成员变量的影响

    include<iostream> #include<string> using namespace std; class parent{ protected: int mv; ...

  5. 宇宙第一IDE是谁?

    更多精彩文章,尽在码农翻身 微服务把我坑了 如何降低程序员的工资? 程序员,你得选准跑路的时间! 两年,我学会了所有的编程语言! 一直CRUD,一直996,我烦透了,我要转型 字节码万岁! 上帝托梦给 ...

  6. Java 切割字符串的几种方式

    按效率排: 1.StringTokenizer切割 是java.util中的一个类,包含的api有: StringTokenizer的方法请参考上一篇. 其中,countTokens为length:n ...

  7. JATG引脚定义

    JTAG各类接口针脚定义.含义以及SWD接线方式 2018年08月10日 16:04:14 kkwant 阅读数 1165 标签: 接口定义tag   原文地址为:JTAG各类接口针脚定义.含义以及S ...

  8. Springboot打包放到Tomcat中报错 One or more listener fail to start

    1.问题: Springboot项目直接启动不报错,打war包放到外部容器Tomcat.东方通上,在@Weblistener注解的监听器类中报错 One or more listener fail t ...

  9. Dubbo——SPI及自适应扩展原理

    文章目录 引言 正文 一.什么是SPI? 1. Java SPI的实现 2. Dubbo SPI实现原理 由配置文件得到的猜想 SPI源码 二.自适应扩展机制 三.Dubbo IOC 总结 引言 Du ...

  10. Mysql事务 JAVAGC 面试

    忽略其他问题,直接上技术面试 你们公司服务器中配置Java GC是哪一种? Java GC 一共分为四种,分别是 -XX:+UseSerialGC 串行垃圾回收器 -XX:+UseParallelGC ...