[Luogu P1066] 2^k进制数 (组合数或DP)
题面
传送门:https://www.luogu.org/problemnew/show/P1066



Solution
这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数。
这题需要高精度,以下省略此声明
.
如果你对数学不感兴趣/喜欢写DP/(不想虐待自己),这里是DP做法。
首先,我们可以发现,这个数最多有w/k位(向上取整),如下图所示:

那么,我们就可以以这个特性做DP啦。
设f[i][j]表示枚举到第i位(指2^k进制下的),最后一位数为j。
f[i][j] = ∑ f[i-1][k] ((j==0 and k==0) or k<j)
这里的k显然是可以用前缀和优化的
初始化 f[1][i]=1 (i=0~2^(w%k)-1)
当然,还有一些小细节:f[倒数第2/第1个][0]=0
答案为∑f[w/k][i]
(因为我没写过DP做法,这个做法纯口胡,如有错误请通知蒟蒻博主)
那....组合数呢?
事实上,这题的组合数做法的确很妙,(当然也有不少细节)
假设我们枚举了第一位数,那么后面位数的方案数是可以通过组合数来计算出来的。
因为后面的数要比第一位大,那么后面的数相当于从 [第一位数+1,2^k-1] 这个数的区间中选出x个数(x为后面的位数数量)来 (因为每一种方案都可以通过摆成升序满足题目要求)。
但是考虑到有可能有若干个前导零,我们还要枚举第一个位数从哪开始。
因为枚举了前导零,我们枚举第一位数时应该从1开始(从0开始会有重复)
这样子,答案为:

(事实上口胡起来简单,写起来还有很多细节,这得亲自体会然后就会感到这题的毒瘤)
就酱,我们就可以切掉嘴巴AC出这道题啦(~ ̄▽ ̄)~
Code
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct Int128
{
static const int N=500;
int a[N],len;
Int128()
{
memset(a,0,sizeof a);
len=0;
}
void Print()
{
for(int i=len;i>=1;i--)
printf("%d",a[i]);
}
friend Int128 operator * (Int128 A,int B)
{
for(int i=1;i<=A.len;i++)
A.a[i]*=B;
bool IsFullZero=true;
for(int i=1;i<=A.len;i++)
{
if(A.a[i]>=10)
{
A.a[i+1]+=A.a[i]/10,A.a[i]%=10;
if(i==A.len and A.a[i+1]!=0)
A.len++;
}
if(A.a[i]!=0) IsFullZero=false;
}
if(IsFullZero==true) A.len=1;
return A;
}
friend Int128 operator / (Int128 A,int B)
{
Int128 ans;
int temp=0;
for(int i=A.len;i>=1;i--)
{
temp=temp*10+A.a[i];
if(temp>=B)
{
ans.a[i]=temp/B,temp=temp%B;
ans.len=max(ans.len,i);
}
}
return ans;
}
friend Int128 operator + (Int128 A,Int128 B)
{
if(A.len<B.len) swap(A,B);
for(int i=1;i<=A.len;i++)
{
A.a[i]=A.a[i]+B.a[i];
if(A.a[i]>9)
{
A.a[i+1]++;A.a[i]-=10;
if(i==A.len)
A.len++;
}
}
return A;
}
};
const int N=1<<(9+1);
Int128 C[N];
int n,x,K,w,first,m;
int main()
{
scanf("%d%d",&K,&w); first=1<<(w%K),x=w/K;
if(w%K==0)
first=1<<K,x--;
m=1<<K; Int128 ans;
for(int j=0;j<=x-1;j++)
{
int tx=x-j;
memset(C[tx].a,0,sizeof C[tx].a);
C[tx].a[1]=1,C[tx].len=1;
for(int i=tx+1;i<=m;i++)
{
memset(C[i].a,0,sizeof C[i].a);
C[i]=(C[i-1]*i)/(i-tx);
}
if(j!=0) first=m;
for(int i=1;i<m and i<first;i++)
{
if(m-1-i<tx) break;
ans=ans+C[m-1-i];
}
//ans.Print();
//cerr<<endl;
} ans.Print();
return 0;
}
[Luogu P1066] 2^k进制数 (组合数或DP)的更多相关文章
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- Luogu P1066 2^k进制数 组合数学
分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 一本通1649【例 2】2^k 进制数
1649:[例 2]2^k 进制数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...
随机推荐
- Go-archive/tar: write after close gopher.txt
where? 在使用Go中tar包循环写入内容的时候 why? 因为已经关闭了tar.writer对象,所以无法写入,但是程序还是有写入操作,所以报错 way? 通过 defer关键字来管理资源的释放 ...
- Leetcode PHP题解--D125 107. Binary Tree Level Order Traversal II
val = $value; } * } */ class Solution { private $vals = []; /** * @param TreeNode $root * @return In ...
- 【题解】hdu4757 【TJOI2018】异或
题目链接 题目大意:有一颗树,有点权,每次询问:一条路径\(x->y\)中与\(z\)异或的最大值,或是以\(x\)为根的子树中与\(y\)异或的最大值. 树剖--还是算了. 观察到,子树的\( ...
- vscode设置snippets
自动添加文件描述信息 "File Comments": { "prefix": "filecomments", "body&quo ...
- pytest文档50-命令行参数--durations统计用例运行时间
前言 写完一个项目的自动化用例之后,发现有些用例运行较慢,影响整体的用例运行速度,于是领导说找出运行慢的那几个用例优化下. --durations 参数可以统计出每个用例运行的时间,对用例的时间做个排 ...
- pytest文档49-命令行参数--tb的使用
前言 pytest 使用命令行执行用例的时候,有些用例执行失败的时候,屏幕上会出现一大堆的报错内容,不方便快速查看是哪些用例失败. --tb=style 参数可以设置报错的时候回溯打印内容,可以设置参 ...
- web自动化测试总结
web自动化: 1.测试用例(操作步骤,熟读需求文档,web项目先用手工研究,前置条件,预期结果) 接口自动化测试中数据功能最适合作为数据驱动,数据放在excel中需要操作excel 为什么web自动 ...
- centos8平台nginx服务配置打开文件限制max open files limits
一,nginx启动时提示打开文件数,ulimit的配置不起作用: 1, 2020/04/26 14:27:46 [notice] 1553#1553: getrlimit(RLIMIT_NOFILE) ...
- selenium基础--登录简单的网站
import time from selenium import webdriver from lxml import etree from selenium.webdriver import Act ...
- dom4j api 详解【转】
1.DOM4J简介 DOM4J是 dom4j.org 出品的一个开源 XML 解析包.DOM4J应用于 Java 平台,采用了 Java 集合框架并完全支持 DOM,SAX 和 JAXP. DOM4J ...