CGANs
Introducation
1. intruduce the conditional version of GANs, which can be constructed by simply feeding the data , y.
2. the CGANs can be used to learn a multi-modal model.
3.GANs in order to sidestep the difficulty of approximating many intractable probabilistic computations.(为了避免许多难以处理的概率计算的近似困难)
4. Adversarial nets have the advantages that Markov chains are never needed, only backpropagation is used to obtain gradients, no inference is required during learning,
and a wide variety of factors and interactions can easily be incorporated into the model.(多种因素和相互作用可以很容易地纳入模型)
5.马尔可夫链(Markov Chain),描述了一种状态序列,其每个状态值取决于前面有限个状态。一般来说,其核心是满足条件期望和平稳的分布,保证在计算过程中能够得到想要的概率分布。而我们考虑的生成模型恰好可能有以下两种情况:
输入一个随机分布的数据(例如一张黑白像素夹杂的噪音图),输出期望的数据(一张头像)
输入含有噪音的数据(在原有的图像上添加噪点或缺损),输出除去噪点或补完后的数据(完整的原始图像),这种情况下的模型也可以叫做任意去噪的自编码器。
无论是哪种情况,我们都希望从模型输出的数据y的概率分布尽可能逼近训练数据集的概率分布。但是让计算机生成一段音乐,或者一张有意义的图片,这个分布是非常复杂,很难求解的;即使通过马尔可夫链取样,得到了一个生成模型,我们最终也很难对这个模型的效果进行评估,因为生成的音乐到底好不好听,不同的人会得到不同的答案。
6. GANs can produce state of the art log-likehood estimate and realistic samples.
7. but
Related Work
1. the challeage of scaling models to accommodate an extremely large number of predicted output categories (调整模型以适应非常多的预测输出类别的挑战), to adress this problem by leveraging additional information such as using natural language corpora.and even a simple linear mapping from image feature-space to word-representation-space can improve.
2. the challage of focusing on learning one-to-one mapping from input to output,but many interesting problems belong to a probabilistic one-to-many mapping.to adress this challege by using a conditional probabilistic generative model , for example, the input is taken to be the conditioning variable and the one-to-many mapping is instantiated(实例化)as a conditional predictive distribution.
Method
1. to specify that the G can capture the data distribution and the D can estimate the probability that a sample came from the training data rather than G.
2. the input is z, G and D are both trained simultaneously. we adjust the parameters for G to minimize $log(1-D(G(z)))$ and adjust the parameters for D to minimize $log(D(X))$

Import Details -----Conditional Adversarial Nets

The training mechanism of CGANs.
1. GANs can be extended to a conditional model if both the G and D are conditioned on some extra information y.
2. y can be any kind of auxiliary information such as class label or data from other modalities.
3. feeding y into both discriminator and generator as additional input layer.
4. prior input noise and y are combined into joint hidden representation 对抗性训练框架允许在如何组成这种隐藏的表示方面具有相当大的灵活性。
5. In the discriminator and are presented as inputs and to a discriminative function (embodied x y again by a MLP in this case).
The formula of a objective function :

The framework of CGANs:

Experiment
1. this paper trained a CGANs on MNIST images conditioned on their class labels, encoded as one-hot vectors.
For G:
both z and y are mapped to hidden layers with RELU, with layer sizes 200 and 1000 respectively, then combined hidden ReLu layer of dimensionality 1200.
For D:
The discriminator maps to a maxout [6] layer with 240 units and 5 pieces, and to a maxout layer x y with 50 units and 5 pieces. Both of the hidden layers mapped to a joint maxout layer with 240 units and 4 pieces before being fed to the sigmoid layer
For Training:
and best estimate of log-likehood on the validation set was used as stopping point.(并以验证集的对数似然最优估计值作为停止点)。

Summary
CGANs outperforms compared with original GANs, we can combine the class label or data from other modalities into the input of G and D, in order to achieve conditional probabilities distribution and controlling GANs.
CGANs的更多相关文章
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- Unsupervised Image-to-Image Translation Networks --- Reading Writing
Unsupervised Image-to-Image Translation Networks --- Reading Writing 2017.03.03 Motivations: most ex ...
- Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产 ...
- #论文笔记# [pix2pixHD] High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Res ...
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们 ...
- CSAGAN:LinesToFacePhoto: Face Photo Generation from Lines with Conditional Self-Attention Generative Adversarial Network - 1 - 论文学习
ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务.先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像.然 ...
- Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化
Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...
- AT指令集之Call
1.//unsolicited result code,URC表示BP->AP+ESIPCPI:<call_id>,<dir>,<sip_msg_type>, ...
- mtk 的conferrence call建立流程
(重点看main_log与) 抓mtk log: 1.*#*#82533284#*#* 进入抓log UI 2.*#*#825364#*#* 进入工程模式 3.进入"Lo ...
随机推荐
- php第六天-UNIX时间戳/格式化时间,程序错误发送的领域
###0x01 PHP的错误处理 1.1 错误报告级别 PHP程序的错误发生一般归属于下列三个领域: 语法错误: 语法错误最常见,并且也容易修复.如:代码中遗漏一个分号.这类错误会阻止脚本的执行. 运 ...
- xss利用——BeEF#stage4(其余功能介绍)
目录 信息收集 => 社会工程 =>网络扫描 => 结合metasploit => tunneling => xss => 维持权限 功能介绍 #1 - 信息收集 ...
- Spring及tomcat初始化日志
Tomcat StandardContext初始化过程 //org.apache.catalina.core.StandardContext#startInternal // 子容器启动 for (C ...
- 过万 star 高星项目的秘密——GitHub 热点速览 Vol.39
作者:HelloGitHub-小鱼干 虽然国外十一并不过国庆,但是本周的 GitHub 也稍显疲软,GitHub 周榜的获 star 超过 1k 的项目寥寥无几,本周新开源的项目更是屈指可数.用 C ...
- spring+springmvc+mybatis+shiro
创建maven框架https://blog.csdn.net/Ajax_mt/article/details/78549119 具体下边 https://blog.csdn.net/w2222288/ ...
- pycharm 配置 github
今天突然想把自己的代码上传到github上去,然后就研究了下pycharm的配置. 首先呢,你得有个github的账号,然后建立一个项目. 然后打开pycharm,选择file->Setting ...
- Lua 协同程序(coroutine)
什么是协同(coroutine)? Lua 协同程序(coroutine)与线程比较类似:拥有独立的堆栈,独立的局部变量,独立的指令指针,同时又与其它协同程序共享全局变量和其它大部分东西. 协同是非常 ...
- [Vue warn]: Error in render: "TypeError: Cannot read property 'matched' of undefined" found in <App> at src/App.vue
当用Vue模块化开发时,输入 http://localhost:8080 页面没有显示,首先按F12,检查是否有如下错误 话不多说,直接看下面: 解决方法1 如果是上面出的问题,以后就要注意了哦, ...
- spring-boot-route(四)全局异常处理
在开发中,我们经常会使用try/catch块来捕获异常进行处理,如果有些代码中忘记捕获异常或者不可见的一些异常出现,就会响应给前端一些不友好的提示,这时候我们可以使用全局异常处理.这样就不用在代码中写 ...
- python数据结构树和二叉树简介
一.树的定义 树形结构是一类重要的非线性结构.树形结构是结点之间有分支,并具有层次关系的结构.它非常类似于自然界中的树.树的递归定义:树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否 ...