矩阵LU分解的MATLAB与C++实现
一:矩阵LU分解
矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵;\(U\)是一个上三角矩阵。
比如\(A= \begin{bmatrix}
1 & 2 & 4 \\
3 & 7 & 2 \\
2 & 3 & 3 \\
\end{bmatrix}\),我们最终要分解成如下形式:
\begin{bmatrix}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & -1 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 2 & 4 \\
0 & 1 & -10 \\
0 & 0 & -15 \\
\end{bmatrix}
\]
现在主要的问题是如何由矩阵\(A\)计算得到矩阵\(L\)和\(U\)呢?我们将在下面详细讨论。
1.1 LU分解原理
首先从矩阵\(U\)入手,因为它是一个上三角矩阵,所以很容易想到高斯消元法,依次把矩阵\(A\)主对角线左下角的元素消为\(0\)就得到\(U\)了。
然后计算矩阵\(L\),这里有个技巧,可以这样想,正是因为有了\(L\),所以\(U\)的左下部分才能被消为\(0\),所以我们记录一下把\(U\)的左下部分消为\(0\)时矩阵\(A\)每行所乘的倍数,这个减去的倍数便是\(L\)左下元素的值!
1.2 LU分解计算举例
1 & 2 & 4 \\
3 & 7 & 2 \\
2 & 3 & 3 \\
\end{bmatrix}
\overset{(2)- \color{red}{3} \times (1)}{\underset{}{\to}}
\begin{bmatrix}
1 & 2 & 4 \\
0 & 1 & -10 \\
2 & 3 & 3 \\
\end{bmatrix}
\overset{(3)- \color{red}{2} \times (1)}{\underset{}{\to}}
\begin{bmatrix}
1 & 2 & 4 \\
0 & 1 & -10 \\
0 & -1 & -5 \\
\end{bmatrix}
\overset{(3)+ \color{red}{1} \times (2)}{\underset{}{\to}}
\begin{bmatrix}
1 & 2 & 4 \\
0 & 1 & -10 \\
0 & 0 & -15 \\
\end{bmatrix}
=U
\]
在运算过程中左下相应元素减去的倍数(上面红色的数字)便是矩阵\(L\)左下角的元素,可以得到:
\begin{bmatrix}
1 & 0 & 0 \\
\color{red}{3} & 1 & 0 \\
\color{red}{2} & \color{red}{-1} & 1 \\
\end{bmatrix}\]
1.3 计算公式总结
通用计算公式是很重要的,因为有了公式之后,编程起来就方便很多了。我们可以根据上面的推导过程整理出如下伪代码:
for \text{ } j = i : n \quad此时i为行下标,j为列下标\\
\qquad U_{ij}=A_{ij}-\sum_{k=1}^{i-1} L_{ik}U_{kj} \hspace{1cm}\\
\qquad for \text{ } x = i+1 : n \quad 此时x为行下标,i为列下标\\
\qquad L_{xi}=(A_{xi}-\sum_{k=1}^{i-1} L_{xk}U_{ki}) /U_{ii} \hspace{0cm}\\
\]
其中\(n\)为方阵的行或列长度,可以看出先计算矩阵\(U\)的第一行,再计算矩阵\(L\)的第一列,再计算矩阵\(U\)的第二行,再计算矩阵\(L\)的第二列,依此类推。
二:矩阵LU分解MATLAB实现
clc,clear all,close all
% 矩阵的LU分解
%% 自己实现
A = [1 2 4;3 7 2;2 3 3]
[n,n] = size(A);
L = eye(n,n); % L初始化为单位矩阵
U = zeros(n,n); % U初始化为零矩阵
for i = 1 : n % 根据计算公式实现
for j = i : n
U(i,j) = A(i,j) - sum(L(i,1 : i - 1) .* U(1 : i - 1,j)');
end
for x = i + 1 : n
L(x,i) = (A(x,i) - sum(L(x,1 : i - 1) .* U(1 : i - 1,i)')) ./ U(i,i);
end
end
L
U
%% 内置函数实现
[L1,U1] = lu(A)
三:矩阵LU分解C++实现
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<vector<double>> a = { {1,2,4},{3,7,2},{2,3,3} };
int n = a.size();
vector<vector<double>> u(n, vector<double>(n));
vector<vector<double>> l(n, vector<double>(n));
for (int i = 0; i < n; i++) //初始化矩阵L和矩阵U
for (int j = 0; j < n; j++)
{
u[i][j] = 0;
if (i == j) l[i][j] = 1;
}
for (int i = 0; i < n; i++)
{
double sum = 0;
for (int j = i; j < n; j++)
{
for (int k = 0; k <= i - 1; k++)
sum += l[i][k] * u[k][j];
u[i][j] = a[i][j] - sum; //计算矩阵U
sum = 0;
}
for (int x = i + 1; x < n; x++)
{
for (int k = 0; k <= i - 1; k++)
sum += l[x][k] * u[k][i];
l[x][i] = (a[x][i] - sum) / u[i][i]; //计算矩阵L
sum = 0;
}
}
cout << "A:" << endl; //输出矩阵A
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
printf("%.3f ", a[i][j]);
}
cout << endl;
}
cout << "L:" << endl; //输出矩阵L
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
printf("%.3f ", l[i][j]);
}
cout << endl;
}
cout << "U:" << endl; //输出矩阵U
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
printf("%.3f ", u[i][j]);
}
cout << endl;
}
return 0;
}
矩阵LU分解的MATLAB与C++实现的更多相关文章
- 矩阵LU分解程序实现(Matlab)
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=z ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
- 矩阵LU分解
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
随机推荐
- Java入门到实践系列(2)——Java环境搭建
一.上集回顾 在<Java入门到实践系列(1)--Java简介>中提到过,Java程序是运行在Java虚拟机的,也展示过下面这张图. JDK:Java程序开发工具包. JRE:Java运行 ...
- 我搭的神经网络不work该怎么办!看看这11条新手最容易犯的错误
1. 忘了数据规范化 2. 没有检查结果 3. 忘了数据预处理 4. 忘了正则化 5. 设置了过大的批次大小 6. 使用了不适当的学习率 7. 在最后一层使用了错误的激活函数 8. 网络含有不良梯度 ...
- C#LeetCode刷题之#141-环形链表(Linked List Cycle)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3901 访问. 给定一个链表,判断链表中是否有环. 进阶: 你能否 ...
- LeetCode 122 best-time-to-buy-and-sell-stock-ii 详解
题目描述 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你 ...
- JetCache埋点的骚操作,不服不行啊
阐述背景 缓存是应对高并发绝对的利器,在很多业务场景允许的情况下,都可以使用缓存来提供性能. 既然用了缓存,那对缓存进行监控必不可少.比如缓存加载耗时,新增耗时等. 在 JetCache 中进行埋点操 ...
- Hive中的用户自定义函数
1.1 关于自定义函数 1)Hive 自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展. 2)当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考 ...
- 运行SQL文件报错:Got a packet bigger than 'max_allowed_packet' bytes With statement:
英文意思:需要使用一个和现在相比较大的空间,可能mysql中的默认空间比文件需要的空间要小 解决方法: 1.修改配置文件中mysql的默认空间大小:在MYSQL的配置文件 my.in ...
- golang IPv6 转 十进制
IPv4 互换: package main import ( "fmt" "math/big" "net" ) func InetNtoA( ...
- 第4篇scrum冲刺(5.24)
一.站立会议 1.照片 2.工作安排 成员 昨天已完成的工作 今天的工作安排 困难 陈芝敏 完成云开发配置,初始化数据库: 线下模块(还剩下获取词的数据库) 倒计时模块的初加载还是有点慢 冯晓凤 ...
- 详解 `HTTP` 系列之一
前言 本文介绍的是HTTP的基础知识,包括HTTP的由来.HTTP的报文信息.状态码.HTTP三个版本的对比等.希望这篇简短的文章能对大家认识HTTP协议提供帮助. HTTP的前世今生 HTTP 由来 ...