浅谈dfs深度优先搜索
深度优先搜索(Depth First Search)是一种常见的暴力算法
此算法上限和下限较高,容易上手,适用情形多,学习性价比高
下限高于有固定的模板,且时间复杂度明显优于暴力枚举,容易拿到题目部分分
int DFS (int k)//DFS常见模板
{ if (到目的地(边界))
{ 输出结果; } else
{ for (int i = 1; i <= n;++i)
{ if (满足条件)
{ 保存边界; DFS(k+1); 恢复第k步的状态; } } }
}
上限高于可优化性高,通过剪枝优化可以大幅度缩小数据搜索范围,以达到意料之外的结果
适用范围广,属于算法竞赛中的万金油算法
而同时dfs也拥有一些缺点
时间复杂度较高(最坏情况为O(n!))很难拿到高分
对比兄弟算法bfs广度优先搜索不适用于对问题最优解的的求解
……
所以我们要结合多方面因素,权衡利弊,在比赛中选取最优的方法,以获取更高的得分
浅谈dfs深度优先搜索的更多相关文章
- 浅谈DFS,BFS,IDFS,A*等算法
搜索是编程的基础,是必须掌握的技能.--王主任 搜索分为盲目搜索和启发搜索 下面列举OI常用的盲目搜索: 1.dijkstra 2.SPFA 3.bfs 4.dfs 5.双向bfs 6.迭代加深搜索( ...
- HDU 1241 Oil Deposits DFS(深度优先搜索) 和 BFS(广度优先搜索)
Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU 4707 Pet(DFS(深度优先搜索)+BFS(广度优先搜索))
Pet Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- 回溯算法 DFS深度优先搜索 (递归与非递归实现)
回溯法是一种选优搜索法(试探法),被称为通用的解题方法,这种方法适用于解一些组合数相当大的问题.通过剪枝(约束+限界)可以大幅减少解决问题的计算量(搜索量). 基本思想 将n元问题P的状态空间E表示成 ...
- 浅谈DFS序
浅谈DFS序 本篇随笔简要讲解一下信息学奥林匹克竞赛中有关树的DFS序的相关内容. DFS序的概念 先来上张图: 树的DFS序,简单来讲就是对树从根开始进行深搜,按搜到的时间顺序把所有节点打上时间戳. ...
- 『ACM C++』HDU杭电OJ | 1416 - Gizilch (DFS - 深度优先搜索入门)
从周三课开始总算轻松了点,下午能在宿舍研究点题目啥的打一打,还好,刚开学的课程还算跟得上,刚开学的这些课程也是复习以前学过的知识,下半学期也不敢太划水了,被各种人寄予厚望之后瑟瑟发抖,只能努力前行了~ ...
- 步步为营(十五)搜索(一)DFS 深度优先搜索
前方大坑预警! 先讲讲什么是搜索吧. 有一天你去一个果园摘梨子,果农告诉你.有一棵树上有一个金子做的梨子,找到就是你的,你该怎么找? 地图例如以下: S 0 0 0 0 0 0 0 0 0 0 0 0 ...
- [算法总结]DFS(深度优先搜索)
目录 一.关于DFS 1. 什么是DFS 2. DFS的搜索方式 二.DFS的具体实现 三.剪枝 1. 顺序性剪枝 2. 重复性剪枝 3. 可行性剪枝 4. 最优性剪枝 5. 记忆化剪枝 四.练习 一 ...
- 回溯 DFS 深度优先搜索[待更新]
首先申明,本文根据微博博友 @JC向北 微博日志 整理得到,本文在这转载已经受作者授权! 1.概念 回溯算法 就是 如果这个节点不满足条件 (比如说已经被访问过了),就回到上一个节点尝试别 ...
- DFS——深度优先搜索的一般格式
DFS是一种深度优先的搜索思想,运用递归完成搜索,本质上也算是穷举思想的一类,可以通过剪枝进行优化. DFS的核心是回溯和递归, 如果以迷宫为例,一般会指定走各个方向的顺序(例如先左再上再右再下).从 ...
随机推荐
- 用GC的策略,管理团队的技术债务
在数字化时代,每一个组织的经营都是建立在数字化的系统之上的,而数字化系统的构建,必然就会带来技术债务,这是每一个数字化团队都要面临的一个问题,如何有效的管控技术债务. 技术债务的产生,是技术团队不断迭 ...
- 笔记: C#RabbitMQ初步使用记录
Rabbitmq 的使用场景有哪些? ①. 跨系统的异步通信,所有需要异步交互的地方都可以使用消息队列.就像我们除了打电话(同步)以外,还需要发短信,发电子邮件(异步)的通讯方式. ②. 多个应用之间 ...
- 快速入门API Explorer
摘要:华为云API Explorer为开发者提供一站式API解决方案统一平台,集成华为云服务所有开放 API,支持全量快速检索.可视化调试.帮助文档.代码示例等能力,帮助开发者快速查找.学习API和使 ...
- visual studio(vs2017、vs2019)离线安装包下载、制作
一.下载安装引导程序(以vs-professional-2019为例) https://aka.ms/vs/16/release/vs_professional.exe 二.在引导程序目录打开cmd命 ...
- H3C MS4300V2配置mac地址与接口绑定
配置mac地址与接口绑定 例: <h3c>system-view //进入系统视图 [h3c]int g 1/0/45 //进入45接口 [h3c-GigabitEthernet1 ...
- JZOJ 5351. 【NOIP2017提高A组模拟9.7】简单无向图
题目大意 给定 \(n\) 个度数为 \(\in [1,2]\) 之间的点,求能组成多少种简单无向图(可不连通,点与点之间有别) 分析 显然答案只与 \(n1,n2\) 有关 那么 \(dp\)?(我 ...
- a^b(位运算&快速幂)
题目链接 题目: 题解:很简单.经典的的一道快速幂的题 注意一下用LL型就ok. 代码: 1 #include <map> 2 #include <set> 3 #includ ...
- Android:遍历视图
<LinearLayout android:id="@+id/ques2_layout" android:layout_width="match_parent&qu ...
- 【PyQt5学习-03-】PyQt5 控件概念
快速开发:先看控件的功能,再根据需要选学 1.什么是控件 程序界面上的元素 各自独立 一块矩形区域 具有的功能 接收用户输入 用户点击 显示内容 放置其他控件 先学常用控件 基础控件 按钮 输入控件 ...
- DesignPatternPrinciple-设计模式原则
1. 单一职责原则(Single Responsibility Principle)类T负责两个不同的职责:职责P1,职责P2. using System; using System.Collecti ...