论文解读(g-U-Nets)《Graph U-Nets》
论文信息
论文标题:Graph U-Nets
论文作者:Hongyang Gao, Shuiwang Ji
论文来源:2019,ICML
论文地址:download
论文代码:download
1 Introduction
受到类似 encoder-decoder architecture 的 U-Nets 影响,作者希望能在图数据上使用这种 pooling 和 up-sampling 的操作。
2 Graph U-Nets
本节依次介绍 graph pooling (gPool) layer, graph unpooling (gUnpool) layer,然后介绍本文用于节点分类的 U-Nets 。
2.1 Graph Pooling Layer
本文提出利用投影向量 $\mathbf{p}$ 来计算图中各个节点的重要性,并且 $\mathbf{p}$ 是可训练的参数,不需要认为指定。假设节点的嵌入向量为 $\mathbf{x}_{\mathrm{i}}$ , 它在向量 $\mathbf{p}$ 上的投影为 $\mathrm{y}_{\mathrm{i}}=\mathbf{x}_{\mathrm{i}} \mathbf{p} /\|\mathbf{p}\|$, $\mathrm{y}_{\mathrm{i}}$ 可以作为衡量节点重要性的度量。
$\mathrm{gPool}$ 计算过程为:
$\begin{array}{l}\mathbf{y} &=&X^{\ell} \mathbf{p}^{\ell} /\left\|\mathbf{p}^{\ell}\right\| \\\mathrm{idx} &=&\operatorname{rank}(\mathbf{y}, k) \\\tilde{\mathbf{y}} &=&\operatorname{sigmoid}(\mathbf{y}(\mathrm{idx})) \\\tilde{X}^{\ell} &=&X^{\ell}(\mathrm{idx},:) \\A^{\ell+1} &=&A^{\ell}(\mathrm{idx}, \mathrm{idx}) \\X^{\ell+1} &=&\tilde{X}^{\ell} \odot\left(\tilde{\mathbf{y}} \mathbf{1}_{C}^{T}\right)\end{array}$
图示如下:
2.2 Graph Unpooling Layer
为在图数据上实现 up-sampling 操作,本文提出 graph unpooling (gUnpool) layer。

在形式上,gUnpool 的层级传播规则为:
$X^{\ell+1}=\operatorname{distribute}\left(0_{N \times C}, X^{\ell}, \mathrm{idx}\right)$
其中,
- $idx \in \mathbb{Z}^{* k}$ 包含在相应的 gPool 层中所选节点的索引,从而将图的大小从 $N$ 个节点减少到 $k$ 个节点;
- $X^{\ell} \in \mathbb{R}^{k \times C}$ 是当前图的特征矩阵;
- $0_{N \times C}$ 是新图的 0 填充的特征矩阵;
Note:在 $X^{\ell+1}$ 中,$idx$ 中具有索引的行向量由 $X^{\ell}$ 中的行向量更新,而其他行向量保持为零。
2.3 Graph U-Nets Architecture
如图所示:
2.4 Graph Connectivity Augmentation via Graph Power
在 gPool 层中,对一些重要的节点进行采样,形成一个新的特征编码图。由于在删除 gPool 中的节点时相关边被删除,所以 pooled graph 中可能形成孤立点。可能会影响信息在后续层中的传播,特别是当使用 GCN 层来聚合来自邻近节点的信息时。所以需要增加 pooled graph 中节点之间的连通性。
为了解决上述问题,使用第 $k$ 个图的幂 $\mathbb{G}^{k}$ 来增加图的连通性。文中使用 $k = 2$ ,替换计算过程中的 $A^{\ell+1}$:
$A^{2}=A^{\ell} A^{\ell}, \quad A^{\ell+1}=A^{2}(\mathrm{idx}, \mathrm{idx})$
2.5 Improved GCN Layer
在 $\mathrm{GCN}$ 中邻接矩阵 $\hat{\mathrm{A}}=\mathrm{A}+\mathrm{I}$ , 论文中改为 $\hat{\mathrm{A}}=\mathrm{A}+2 \mathrm{I}$,给予中心节点更大的权重。
3 Experimental Study
数据集
节点分类
图分类
4 Conclusion
在这项工作中,我们提出了g-U-Nets网络中新的 gPool 和 gUnpool 层用于网络嵌入。gPool 层对图形数据实现了规则的全局 k-max 池化操作。它对重要节点的子集进行采样,以实现高级特征编码和接受域扩大。通过使用一个可训练的投影向量,gPool层根据其标量投影值对节点进行采样。此外,我们提出了对图数据应用非池操作的gUnpool层。利用原图中节点的位置信息,gUnpool 层对相应的 gPool 层进行逆操作,恢复原图的结构。基于我们的 gPool 和 gUnpool 层,我们提出了图 U-Nets(gU-Nets) 结构,它在图像数据上使用与常规U-Net类似的编码-解码器结构。实验结果表明,与其他gnn相比,我们的g-u-net在转换学习任务上实现了性能的提高。为了避免采样图中可能存在的孤立节点问题,我们采用第二图幂来提高图的连通性。对消融术的研究表明了这些贡献
论文解读(g-U-Nets)《Graph U-Nets》的更多相关文章
- 论文解读《Deep Attention-guided Graph Clustering with Dual Self-supervision》
论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu ...
- 论文解读 - Relational Pooling for Graph Representations
1 简介 本文着眼于对Weisfeiler-Lehman算法(WL Test)和WL-GNN模型的分析,针对于WL测试以及WL-GNN所不能解决的环形跳跃连接图(circulant skip link ...
- 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...
- 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...
- 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
- 论文解读 - Composition Based Multi Relational Graph Convolutional Networks
1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi- ...
随机推荐
- form表单与css选择器
目录 form表单 action属性 input标签 lable标签 select标签 textarea标签 补充 网络请求方式 CSS简介 CSS基本选择器 组合选择器 属性选择器 分组与嵌套 伪类 ...
- python之数据类型的内置方法(set、tuple、dict)与简单认识垃圾回收机制
目录 字典的内置方法 类型转换 字典取值 修改值 计算字典长度 成员运算 删除元素 获取元素 更新字典 快速生成字典 setdefault()方法 元组的内置方法 类型转换 索引与切片操作 统计长度 ...
- Python模块Ⅰ
Python模块Ⅰ part1 模块的定义/取别名 自定义模块 什么是模块:模块的本质就是.py文件,封装语句的最小单位 模块中出现的变量,for循环,if结构,函数定义...称为模块成员 模块的运行 ...
- 第6组 Beta冲刺 总结
目录 1. 基本情况 2. 思考与总结 2.1. 设想和目标 2. 计划 3. 资源 4. 变更管理 5. 设计/实现 6. 测试/发布 7. 团队的角色,管理,合作 8. 总结 3. 敏捷开发 1. ...
- redis-server.exe双击闪退
转自 https://blog.csdn.net/qq_40361770/article/details/80454248 解决方法: 1-win+R 打开命令行 2-cd至redis目录,例如 D: ...
- atcoder abc 244
atcoder abc 244 D - swap hats 给定两个 R,G,B 的排列 进行刚好 \(10^{18}\) 次操作,每一次选择两个交换 问最后能否相同 刚好 \(10^{18}\) 次 ...
- camunda流程引擎概念术语
前言 本文重点介绍开源流程引擎camunda的核心概念,这些概念同样适用于JBMP.Activiti.Flowable流程引擎,了解这些基本概念和原理,使用流程引擎API将更得心应手. 一.Proce ...
- Camunda如何适配国产数据库达梦
前言 camunda流程引擎官方支持的数据库有:MySQL .MariaDB .Oracle .DB2 .PostgreSQL .SQL Server.H2.对于其他类型的数据库如何支持,尤其是国产数 ...
- ExtJS 布局-Table布局(Table layout)
更新记录: 2022年6月1日 开始. 2022年6月10日 发布. 1.说明 table布局类似表格,通过指定行列数实现布局. 2.设置布局方法 在父容器中指定 layout: 'table' la ...
- 拙见--springMVC的controller接受的请求参数
1-这种是最常用的表单参数提交,ContentType指定为application/x-www-form-urlencoded,也就是会进行URL编码. 1.1-对象类型实体Bean接收请求参数(表单 ...