\(tag\)没开够\(WA\)了一发。。。

求出\(dfs\)序,然后按深度分类更新与查询。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long #define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 200007; struct Edge{
int nxt, pre;
}e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v){
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
} int dep[N], L[N], R[N], dfnIndex;
inline void DFS(int u, int fa){
dep[u] = dep[fa] + 1, L[u] = ++dfnIndex;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == fa) continue;
DFS(v, u);
}
R[u] = dfnIndex;
} int val[N]; #define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
int t[N << 2], tag[N << 3];
inline void Pushup(int rt){
t[rt] = t[rt << 1] + t[rt << 1 | 1];
}
inline void Pushdown(int rt, int l, int r){
if(!tag[rt]) return;
tag[rt << 1] += tag[rt];
tag[rt << 1 | 1] += tag[rt];
int mid = (l + r) >> 1;
t[rt << 1] += (mid - l + 1) * tag[rt];
t[rt << 1 | 1] += (r - mid) * tag[rt];
tag[rt] = 0;
}
inline void Updata(int rt, int l, int r, int L, int R, int w){
if(L <= l && r <= R){
tag[rt] += w;
t[rt] += (r - l + 1) * w;
return;
}
Pushdown(rt, l, r);
int mid = (l + r) >> 1;
if(L <= mid)
Updata(lson, L, R, w);
if(R > mid)
Updata(rson, L, R, w);
Pushup(rt);
}
inline int Query(int rt, int l, int r, int x){
if(l == r){
return t[rt];
}
Pushdown(rt, l, r);
int mid = (l + r) >> 1;
if(x <= mid)
return Query(lson, x);
else
return Query(rson, x);
}
int main(){
//FileOpen();
int n, m;
io >> n >> m;
R(i,1,n){
io >> val[i];
}
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
} DFS(1, 0); while(m--){
int opt;
io >> opt;
if(opt == 1){
int x, w;
io >> x >> w;
Updata(1, 1, n, L[x], R[x], dep[x] & 1 ? w : -w);
}
else{
int x;
io >> x;
printf("%d\n", val[x] + Query(1, 1, n, L[x]) * (dep[x] & 1 ? 1 : -1));
}
} return 0;
}

CF383C Propagating tree (线段树,欧拉序)的更多相关文章

  1. Bzoj 2286 & Luogu P2495 消耗战(LCA+虚树+欧拉序)

    题面 洛谷 Bzoj 题解 很容易想到$O(nk)$的树形$dp$吧,设$f[i]$表示处理完这$i$颗子树的最小花费,同时再设一个$mi[i]$表示$i$到根节点$1$路径上的距离最小值.于是有: ...

  2. 【BZOJ 3772】精神污染 主席树+欧拉序

    这道题的内存…………………真·精神污染……….. 这道题的思路很明了,我们就是要找每一个路径包含了多少其他路径那么就是找,有多少路径的左右端点都在这条路径上,对于每一条路径,我们随便选定一个端点作为第 ...

  3. BZOJ 3813--奇数国(线段树&欧拉函数&乘法逆元&状态压缩)

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] ...

  4. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  5. [bzoj3813] 奇数国 [线段树+欧拉函数]

    题面 传送门 思路 这题目是真的难读......阅读理解题啊...... 但是理解了以后就发现,题目等价于: 给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993 ...

  6. Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)

    题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...

  7. 线段树+欧拉函数——cf1114F

    调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. ...

  8. codeforces 383C Propagating tree 线段树

    http://codeforces.com/problemset/problem/383/C 题目就是说,  给一棵树,将一个节点的值+val, 那么它的子节点都会-val, 子节点的子节点+val. ...

  9. Please, another Queries on Array? CodeForces - 1114F (线段树,欧拉函数)

    这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知 ...

  10. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

随机推荐

  1. .net6.0 初探

    概述:大概的了解一下 dotnet 6.0 建立 MVC web项目的过程以及程序调用  结合 EF 框架进行简单 的CRUD 1.选择创建  MVC 的Web项目 2.框架类型选择 6.0 3. 6 ...

  2. 《HALCON数字图像处理》第六章笔记

    目录 第六章 图像增强 图像增强的概念和分类 灰度变换 直方图处理 图像的平滑 图像的锐化 图像的彩色增强 我在Gitee上建了个仓库,会将学习书本的时候打的一些代码上传上去,笔记中所有代码都在仓库里 ...

  3. 面试常问的dubbo的spi机制到底是什么?

    前言 dubbo是一款微服务开发框架,它提供了 RPC通信 与 微服务治理 两大关键能力.作为spring cloud alibaba体系中重要的一部分,随着spring cloud alibaba在 ...

  4. 大功率超远距离lora无线数传电台,多级中继功能

    一.在无线通信领域,LoRa是目前市场最被看好的技术之一.随着新一代LoRa调制技术的升级,市场对LoRa技术的认知.认可逐步提高,基于LoRa调制技术开发的产品得到更广泛的应用.受益于其超低的接收灵 ...

  5. 【Azure 应用服务】App Service 开启了私有终结点(Private Endpoint)模式后,如何来实现公网Git部署呢?

    问题描述 因为中国区的App Service对外(公网访问)需要进行ICP备案,所以很多情况下,Web应用部署到App Service后,都是通过Application Gateway(应用程序网关) ...

  6. BUUCTF-镜子里的世界

    镜子里面的世界 16进制看了下没有东西,binwalk分离了一下也没发现其他的,使用stegsolve查看即可发现.

  7. SAP 维护视图隐藏字段

    PBO:     MODULE reset_index. 其中ZDT_BPC002_T02 为视图名称. MODULE reset_index OUTPUT. FIELD-SYMBOLS:<fs ...

  8. XMAL中的x是何方神僧

    在一开始我们接触WPF时,总是被小X牵着鼻子走,还不知道它是谁,比如 <Window x:Class="Blend_WPF.WindowStyle"        xmlns ...

  9. Python爬取全球是最大的电影数据库网站IMDb数据

    在使用 Python 开发爬虫的过程中,requests 和 BeautifulSoup4(别名bs4) 应用的比较广泛,requests主要用于模拟浏览器的客户端请求,以获取服务器端响应,接收到的响 ...

  10. Node.js精进(8)——错误处理

    在 Node.js 中,提供了 error 模块,并且内置了标准的 JavaScript 错误,常见的有: EvalError:在调用 eval() 函数时出现问题时抛出该错误. SyntaxErro ...