[NPUCTF2020]EzRSA
[NPUCTF2020]EzRSA
题目:
from gmpy2 import lcm , powmod , invert , gcd , mpz
from Crypto.Util.number import getPrime
from sympy import nextprime
from random import randint
p = getPrime(1024)
q = getPrime(1024)
n = p * q
gift = lcm(p - 1 , q - 1) #求最小公倍数 其实gift就是欧拉函数?
e = 54722
flag = b'NPUCTF{******************}'
m = int.from_bytes(flag , 'big')
c = powmod(m , e , n)
print('n: ' , n)
print('gift: ' , gift)
print('c: ' , c)
#n: 17083941230213489700426636484487738282426471494607098847295335339638177583685457921198569105417734668692072727759139358207667248703952436680183153327606147421932365889983347282046439156176685765143620637107347870401946946501620531665573668068349080410807996582297505889946205052879002028936125315312256470583622913646319779125559691270916064588684997382451412747432722966919513413709987353038375477178385125453567111965259721484997156799355617642131569095810304077131053588483057244340742751804935494087687363416921314041547093118565767609667033859583125275322077617576783247853718516166743858265291135353895239981121
#gift: 2135492653776686212553329560560967285303308936825887355911916917454772197960682240149821138177216833586509090969892419775958406087994054585022894165950768427741545736247918410255804894522085720642952579638418483800243368312702566458196708508543635051350999572787188236243275631609875253617015664414032058822919469443284453403064076232765024248435543326597418851751586308514540124571309152787559712950209357825576896132278045112177910266019741013995106579484868768251084453338417115483515132869594712162052362083414163954681306259137057581036657441897428432575924018950961141822554251369262248368899977337886190114104
#c: 3738960639194737957667684143565005503596276451617922474669745529299929395507971435311181578387223323429323286927370576955078618335757508161263585164126047545413028829873269342924092339298957635079736446851837414357757312525158356579607212496060244403765822636515347192211817658170822313646743520831977673861869637519843133863288550058359429455052676323196728280408508614527953057214779165450356577820378810467527006377296194102671360302059901897977339728292345132827184227155061326328585640019916328847372295754472832318258636054663091475801235050657401857262960415898483713074139212596685365780269667500271108538319
解析
有n,先看看能不能直接进行大数分解。
查到了:
p=106021448991021391444550749375115277080844281746248845802565680557785009341952320484175568763707424932172033597514861602114171459176440279045761846695231788376075050452154924141266290931413542110639081792550648106240966552406813059396358355737185354885474455248579946190266152416149137616855791805617206153497
q=161136651053130509602530659420755324119806487925813087617466818245407407797561810253722204813002837916779909309520498985459703212021249251124954613236122142746302911323565396331355397916764254680629384957057354297855676493062493901977415968666512459829211010720514167083018352796496733697235524845188512914793
qp都出来了,就直接求d了。
但是这题不太常规的一点在于:e和phi并不互素,这意味着我们不能直接求d。
e是偶数,phi也是偶数,至少存在一个公因数2。
phi =(p-1)*(q-1)
x = gmpy2.gcd(phi,e)
print(x)
x=2
可知最大公因数为2。
我们让e整除2,从而让其与phi互质,这样就可以求d了。
注意,我们求出d之后,如果直接:m=pow(c,int(d),n)
求出来的不是m,而是m的平方。
为什么呢:c=(m^e) mod n 经过变型 => c=((m2)e/2)mod n
因为我们用的是e//2,所以其实得到的是m^2
也就是说求出来m之后记得开个平方。
解答
import gmpy2
import binascii
from Crypto.Util.number import long_to_bytes
e = 54722
n = 17083941230213489700426636484487738282426471494607098847295335339638177583685457921198569105417734668692072727759139358207667248703952436680183153327606147421932365889983347282046439156176685765143620637107347870401946946501620531665573668068349080410807996582297505889946205052879002028936125315312256470583622913646319779125559691270916064588684997382451412747432722966919513413709987353038375477178385125453567111965259721484997156799355617642131569095810304077131053588483057244340742751804935494087687363416921314041547093118565767609667033859583125275322077617576783247853718516166743858265291135353895239981121
gift = 2135492653776686212553329560560967285303308936825887355911916917454772197960682240149821138177216833586509090969892419775958406087994054585022894165950768427741545736247918410255804894522085720642952579638418483800243368312702566458196708508543635051350999572787188236243275631609875253617015664414032058822919469443284453403064076232765024248435543326597418851751586308514540124571309152787559712950209357825576896132278045112177910266019741013995106579484868768251084453338417115483515132869594712162052362083414163954681306259137057581036657441897428432575924018950961141822554251369262248368899977337886190114104
c = 3738960639194737957667684143565005503596276451617922474669745529299929395507971435311181578387223323429323286927370576955078618335757508161263585164126047545413028829873269342924092339298957635079736446851837414357757312525158356579607212496060244403765822636515347192211817658170822313646743520831977673861869637519843133863288550058359429455052676323196728280408508614527953057214779165450356577820378810467527006377296194102671360302059901897977339728292345132827184227155061326328585640019916328847372295754472832318258636054663091475801235050657401857262960415898483713074139212596685365780269667500271108538319
p = 106021448991021391444550749375115277080844281746248845802565680557785009341952320484175568763707424932172033597514861602114171459176440279045761846695231788376075050452154924141266290931413542110639081792550648106240966552406813059396358355737185354885474455248579946190266152416149137616855791805617206153497
q = 161136651053130509602530659420755324119806487925813087617466818245407407797561810253722204813002837916779909309520498985459703212021249251124954613236122142746302911323565396331355397916764254680629384957057354297855676493062493901977415968666512459829211010720514167083018352796496733697235524845188512914793
phi =(p-1)*(q-1)
e1 = e//2
d = gmpy2.invert(e1,phi) #私钥d则是使用gmpy2库求解逆元得出。
m2=gmpy2.powmod(c,d,n)
m=gmpy2.iroot(m2,2)[0] #开平方
print(binascii.unhexlify(hex(m)[2:]))
b'NPUCTF{diff1cult_rsa_1s_e@sy}'
[NPUCTF2020]EzRSA的更多相关文章
- 刷题[NPUCTF2020]ezlogin
xpath注入 xpath注入这篇文章有关于xpath很详细的解答,包括原理等,详细了解请见此篇. 我个人再稍微讲一讲: 首先它的网站目录下会有一个xml文件,大概格式是这样: <?xml ve ...
- [NPUCTF2020]Baby Obfuscation wp
整体观察main函数,可以发现用户自定义函数和变量存在混淆,猜测为函数名及变量名asc混淆. 对函数进行分析: Fox1为欧几里得算法求最大公约数 Fox5其实是pow Fox4根据逻辑数学的法则实际 ...
- rsa加密初探
RSA加密算法初探 RSA加密算法是早期的非对称加密,公钥和私钥分离,公开公钥,通过确保私钥的安全来保证加密内容的安全.由麻省理工学院的罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi ...
- DASCTF 安恒七月赛wp
web Ezfileinclude 首页一张图片,看src就可以看出文件包含 验证了时间戳 尝试用php://filter 读源码读不到,以为只能读.jpg,然后用../路径穿越有waf 最后居然一直 ...
随机推荐
- java的基本数据类型自动转换
本文主要内容阐明java的自动数据类型转换 首先明确,数据总是由精度低到精度高方向转换 public class AutoConvert { public static void main(Strin ...
- Python简单api实现
flask 作用及简单使用 Flask的简单介绍及使用方法简介_珂鸣玉的博客-CSDN博客_flask 简单api搭建 import flask api = flask.Flask(__name__) ...
- 可持久化杀手——rope学习笔记
概述 std::rope,内部一说是可持久化平衡树,一说是块状链表. 它可以实现很多可持久化数组问题. 基本使用 #include<bits/extc++.h> using namespa ...
- SwiftUI(一)
macOS 11.4 Xcode 12.5.1 1.新建工程,创建一个swiftui文件 2.创建后有些画布是在下面显示的 3.先来看下效果图 4. CardImageView.swi ...
- 揭开华为云CodeArts TestPlan启发式测试设计神秘面纱!
摘要:质量是产品的生死线. 本文分享自华为云社区<揭开华为云CodeArts TestPlan启发式测试设计神秘面纱!>,作者:华为云PaaS服务小智 . 2019年12月20日,是美国波 ...
- 如何在 pyqt 中使用动画实现平滑滚动的 QScrollArea
前言 在之前的博客<如何在 pyqt 中实现平滑滚动的 QScrollArea>中,我们使用定时器和队列实现了平滑滚动.但是实现代码还是有一点复杂,所以这篇博客将使用 Qt 的动画框架 Q ...
- 创建型模式 - 抽象工厂模式AbstractFactory
学习而来,代码是自己敲的.也有些自己的理解在里边,有问题希望大家指出. 模式的定义与特点 抽象工厂模式.是一种为访问类提供一个创建一组相关或相关一类对象的接口,且访问类无需指定所要的产品的具体类,就能 ...
- Quartz.Net源码Example之Quartz.Examples
Quartz.Examples 反射-Example批量执行 实现思路:定义一个统一的接口,需要实现的类全部实现该接口:通过反射获取实现该接口的实例并触发其中的方法. 定义统一的接口 // 所有要 ...
- python开发云主机类型管理脚本
python开发云主机类型管理脚本 开发flavor_manager.py程序,来完成云主机类型管理的相关操作. 该文件拥有以下功能: 根据命令行参数,创建一个云主机类型,返回response. 查询 ...
- 我们从 CircleCI 安全事件获得的3个经验教训
CircleCI 作为业内最受欢迎的 CI/CD 平台提供商之一,有超过20万个 DevOps 团队使用其平台.该公司在今年1月在其官网报告了一起安全事件引起客户恐慌.在此事件中,有身份不明的恶意攻击 ...