2023-01-12:一个n*n的二维数组中,只有0和1两种值,
当你决定在某个位置操作一次,
那么该位置的行和列整体都会变成1,不管之前是什么状态。
返回让所有值全变成1,最少的操作次数。
1 < n < 10,没错!原题就是说n < 10, 不会到10!最多到9!
来自华为。

答案2023-01-12:

四维dp+贪心。这道题优化力度很有限,跟暴力差不多。
代码用rust和solidity编写。

代码用solidity编写。代码如下:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17; contract Hello{ function main() public pure returns (int32){
int32[][] memory matrix = new int32[][](2);
for (int32 i = 0; i < 2; i++) {
matrix[uint32(i)] = new int32[](2);
for (int32 j = 0; j < 2; j++) {
matrix[uint32(i)][uint32(j)] = 0;
}
}
matrix[1][1] = 1;
int32 ans = setOneMinTimes3(matrix);
return ans;
} // 正式方法 + 贪心
function setOneMinTimes3(int32[][] memory matrix) public pure returns (int32) {
int32 n = int32(uint32(matrix.length));
int32 m = int32(uint32(matrix[0].length));
int32[] memory arr = new int32[](uint32(n));
for (int32 i = 0; i < n; i++) {
int32 status = 0;
for (int32 j = 0; j < m; j++) {
if (matrix[uint32(i)][uint32(j)] == 1) {
status |= leftk(j);
}
}
arr[uint32(i)] = status;
}
int32[][][][] memory dp = new int32[][][][](uint32(leftk(n)));
for (int32 a = 0; a < leftk(n); a++) {
dp[uint32(a)] = new int32[][][](uint32(leftk(m)));
for (int32 b = 0; b < leftk(m); b++) {
dp[uint32(a)][uint32(b)] = new int32[][](uint32(n));
for (int32 c = 0; c < n; c++) {
dp[uint32(a)][uint32(b)] [uint32(c)] = new int32[](uint32(m));
for (int32 d = 0; d < m; d++) {
dp[uint32(a)][uint32(b)] [uint32(c)][uint32(d)] = -1;
}
}
}
}
return process3(arr, n, m, 0, 0, 0, 0, dp);
} function process3(int32[] memory arr, int32 n, int32 m, int32 row, int32 col, int32 r, int32 c, int32[][][][] memory dp) public pure returns (int32) {
if (r == n) {
for (int32 i = 0; i < n; i++) {
if ((row & leftk(i)) == 0 && (arr[uint32(i)] | col) != leftk(m) - 1) {
return 2147483647;
}
}
return 0;
}
if (c == m) {
return process3(arr, n, m, row, col, r + 1, 0, dp);
}
if (dp[uint32(row)][uint32(col)][uint32(r)][uint32(c)] != -1) {
return dp[uint32(row)][uint32(col)][uint32(r)][uint32(c)];
}
int32 p1 = process3(arr, n, m, row, col, r, c + 1, dp);
int32 p2 = 2147483647;
int32 next2 = process3(arr, n, m, row | leftk(r), col | leftk(c), r + 1, 0, dp);
if (next2 != 2147483647) {
p2 = 1 + next2;
}
int32 ans = min(p1, p2);
dp[uint32(row)][uint32(col)][uint32(r)][uint32(c)] = ans;
return ans;
} function leftk(int32 k) public pure returns (int32){
int32 ans = 1;
while (k>0){
ans*=2;
k--;
}
return ans;
} function min(int32 a,int32 b)public pure returns (int32){
if(a<b){
return a;
}else{
return b;
}
} }

代码用rust编写。代码如下:

use rand::Rng;
use std::iter::repeat;
fn main() {
let mut matrix = vec![vec![0, 0], vec![0, 1]];
let ans3 = set_one_min_times3(&mut matrix);
println!("ans3 = {}", ans3); let nn: i32 = 3;
let test_time: i32 = 5000;
println!("测试开始");
for i in 0..test_time {
let n = rand::thread_rng().gen_range(0, nn) + 1;
let m = rand::thread_rng().gen_range(0, nn) + 1;
let p0 = rand::thread_rng().gen_range(0, 100);
let mut matrix = random_matrix(n, m, p0);
let ans1 = set_one_min_times1(&mut matrix);
let ans2 = set_one_min_times2(&mut matrix);
let ans3 = set_one_min_times3(&mut matrix);
if ans1 != ans2 || ans1 != ans3 {
println!("出错了!{}", i);
println!("ans1 = {}", ans1);
println!("ans2 = {}", ans2);
println!("ans3 = {}", ans3);
break;
}
}
println!("测试结束");
} // 暴力方法
// 为了验证
fn set_one_min_times1(matrix: &mut Vec<Vec<i32>>) -> i32 {
let n = matrix.len() as i32;
let m = matrix[0].len() as i32;
let limit = 1 << (n * m);
let mut ans = i32::MAX;
// 0000000000000
// 0000000000001
// 0000000000010
// 0000000000011
// 0000000000100
for status in 0..limit {
if ok(status, matrix, n, m) {
ans = get_min(ans, hamming_weight(status));
}
}
return ans;
} fn get_min<T: Clone + Copy + std::cmp::PartialOrd>(a: T, b: T) -> T {
if a < b {
a
} else {
b
}
} fn ok(status: i32, matrix: &mut Vec<Vec<i32>>, n: i32, m: i32) -> bool {
let mut help: Vec<Vec<i32>> = repeat(repeat(0).take(m as usize).collect())
.take(n as usize)
.collect();
let limit = n * m;
for i in 0..limit {
if (status & (1 << i)) != 0 {
let row = i / m;
let col = i % m;
for j in 0..n {
help[j as usize][col as usize] = 1;
}
for j in 0..m {
help[row as usize][j as usize] = 1;
}
}
}
for i in 0..n {
for j in 0..m {
if help[i as usize][j as usize] == 0 && matrix[i as usize][j as usize] == 0 {
return false;
}
}
}
return true;
} fn hamming_weight(n: i32) -> i32 {
let mut n = n as u32;
n = (n & 0x55555555) + ((n >> 1) & 0x55555555);
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
n = (n & 0x0f0f0f0f) + ((n >> 4) & 0x0f0f0f0f);
n = (n & 0x00ff00ff) + ((n >> 8) & 0x00ff00ff);
n = (n & 0x0000ffff) + ((n >> 16) & 0x0000ffff);
return n as i32;
} // 正式方法
fn set_one_min_times2(matrix: &mut Vec<Vec<i32>>) -> i32 {
let n = matrix.len() as i32;
let m = matrix[0].len() as i32;
let mut arr: Vec<i32> = repeat(0).take(n as usize).collect();
for i in 0..n {
let mut status = 0;
for j in 0..m {
if matrix[i as usize][j as usize] == 1 {
status |= 1 << j;
}
}
arr[i as usize] = status;
}
let mut dp: Vec<Vec<Vec<Vec<i32>>>> = repeat(
repeat(
repeat(repeat(-1).take(m as usize).collect())
.take(n as usize)
.collect(),
)
.take((1 << m) as usize)
.collect(),
)
.take((1 << n) as usize)
.collect();
return process2(&mut arr, n, m, 0, 0, 0, 0, &mut dp);
} fn process2(
arr: &mut Vec<i32>,
n: i32,
m: i32,
row: i32,
col: i32,
r: i32,
c: i32,
dp: &mut Vec<Vec<Vec<Vec<i32>>>>,
) -> i32 {
if r == n {
for i in 0..n {
if (row & (1 << i)) == 0 && (arr[i as usize] | col) != (1 << m) - 1 {
return i32::MAX;
}
}
return 0;
}
if c == m {
return process2(arr, n, m, row, col, r + 1, 0, dp);
}
if dp[row as usize][col as usize][r as usize][c as usize] != -1 {
return dp[row as usize][col as usize][r as usize][c as usize];
}
let p1 = process2(arr, n, m, row, col, r, c + 1, dp);
let mut p2 = i32::MAX;
let next2 = process2(arr, n, m, row | (1 << r), col | (1 << c), r, c + 1, dp);
if next2 != i32::MAX {
p2 = 1 + next2;
}
let ans = get_min(p1, p2);
dp[row as usize][col as usize][r as usize][c as usize] = ans;
return ans;
} // 正式方法 + 贪心
fn set_one_min_times3(matrix: &mut Vec<Vec<i32>>) -> i32 {
let n = matrix.len() as i32;
let m = matrix[0].len() as i32;
let mut arr: Vec<i32> = repeat(0).take(n as usize).collect();
for i in 0..n {
let mut status = 0;
for j in 0..m {
if matrix[i as usize][j as usize] == 1 {
status |= 1 << j;
}
}
arr[i as usize] = status;
}
let mut dp: Vec<Vec<Vec<Vec<i32>>>> = repeat(
repeat(
repeat(repeat(-1).take(m as usize).collect())
.take(n as usize)
.collect(),
)
.take((1 << m) as usize)
.collect(),
)
.take((1 << n) as usize)
.collect();
return process3(&mut arr, n, m, 0, 0, 0, 0, &mut dp);
}
fn process3(
arr: &mut Vec<i32>,
n: i32,
m: i32,
row: i32,
col: i32,
r: i32,
c: i32,
dp: &mut Vec<Vec<Vec<Vec<i32>>>>,
) -> i32 {
if r == n {
for i in 0..n {
if (row & (1 << i)) == 0 && (arr[i as usize] | col) != (1 << m) - 1 {
return i32::MAX;
}
}
return 0;
}
if c == m {
return process3(arr, n, m, row, col, r + 1, 0, dp);
}
if dp[row as usize][col as usize][r as usize][c as usize] != -1 {
return dp[row as usize][col as usize][r as usize][c as usize];
}
let p1 = process3(arr, n, m, row, col, r, c + 1, dp);
let mut p2 = i32::MAX;
let next2 = process3(arr, n, m, row | (1 << r), col | (1 << c), r + 1, 0, dp);
if next2 != i32::MAX {
p2 = 1 + next2;
}
let ans = get_min(p1, p2);
dp[row as usize][col as usize][r as usize][c as usize] = ans;
return ans;
} fn random_matrix(n: i32, m: i32, p0: i32) -> Vec<Vec<i32>> {
let mut ans: Vec<Vec<i32>> = repeat(repeat(0).take(m as usize).collect())
.take(n as usize)
.collect();
for i in 0..n {
for j in 0..m {
ans[i as usize][j as usize] = if rand::thread_rng().gen_range(0, 100) < p0 {
0
} else {
1
};
}
}
return ans;
}

2023-01-12:一个n*n的二维数组中,只有0和1两种值, 当你决定在某个位置操作一次, 那么该位置的行和列整体都会变成1,不管之前是什么状态。 返回让所有值全变成1,最少的操作次数。 1 <的更多相关文章

  1. 《剑指Offer》第1题(Java实现):在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

    一.题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该 ...

  2. 功能要求:定义一个两行三列的二维数组 names 并赋值,使用二重循环输出二维数组中的元素。

    功能要求:定义一个两行三列的二维数组 names 并赋值,使用二重循环输出二维数组中的元素 names={{"tom","jack","mike&qu ...

  3. 剑指offer系列——二维数组中,每行从左到右递增,每列从上到下递增,设计算法找其中的一个数

    题目:二维数组中,每行从左到右递增,每列从上到下递增,设计一个算法,找其中的一个数 分析: 二维数组这里把它看作一个矩形结构,如图所示: 1 2 8 2 4 9 12 4 7 10 13 6 8 11 ...

  4. 剑指offer-特定二维数组中查找一个元素是否存在-二分搜索-二维数组

    int [][] array ={ {1,2,8,9}, {2,4,9,12}, {4,7,10,13}, {6,8,11,19} }; 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都 ...

  5. 【c语言】二维数组中的查找,杨氏矩阵在一个二维数组中,每行都依照从左到右的递增的顺序排序,输入这种一个数组和一个数,推断数组中是否包括这个数

    // 二维数组中的查找,杨氏矩阵在一个二维数组中.每行都依照从左到右的递增的顺序排序. // 每列都依照从上到下递增的顺序排序.请完毕一个函数,输入这种一个数组和一个数.推断数组中是否包括这个数 #i ...

  6. 【剑指Offer】01、二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  7. C语言:将3*5矩阵中第k列的元素左移到第0列,第k列以后的每列元素依次左移,原来左边的各列依次绕到右边。-在m行m列的二维数组中存放如下规律的数据,

    //将3*5矩阵中第k列的元素左移到第0列,第k列以后的每列元素依次左移,原来左边的各列依次绕到右边. #include <stdio.h> #define M 3 #define N 5 ...

  8. 062 01 Android 零基础入门 01 Java基础语法 07 Java二维数组 01 二维数组应用

    062 01 Android 零基础入门 01 Java基础语法 07 Java二维数组 01 二维数组应用 本文知识点:二维数组应用 二维数组的声明和创建 ? 出现空指针异常 数组的名字指向数组的第 ...

  9. 【剑指offer】01 二维数组中的查找

    题目地址:二维数组中的查找 题目描述                                    在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照 ...

  10. 将String类型的二维数组中的元素用FileOutputStream的write方法生成一个文件

      将String类型的二维数组中的元素用FileOutputStream的write方法生成一个文件import java.io.File;import java.io.FileOutputStre ...

随机推荐

  1. sqlserver数据库连接数相关问题

    sql语句监控连接数量 SELECT ec.client_net_address , es.[program_name] , es.[host_name] , es.login_name , COUN ...

  2. Pod概述

    Pod的类型 Pod的类型有如下两个: 自主式Pod:自主式Pod的含义简白来说就是不是被控制器管理的Pod,另一种就是被控制管理的Pod,不被控制器管理的Pod你会发现,它一旦死亡的话,就没有人把它 ...

  3. 孙勇男:实时视频 SDK 黑盒测试架构丨Dev for Dev 专栏

    Dev for Dev 专栏全称为 Developer for Developer,该专栏是声网与 RTC 开发者社区共同发起的开发者互动创新实践活动.透过工程师视角的技术分享.交流碰撞.项目共建等多 ...

  4. 【读书笔记】排列研究-置换角度(分解为Products Of Cycles) 含GroupExploer使用

    upd 2020-08-06 23:11完成了最初稿 目录 定义 开胃菜 entrée 群论角度 应用:几何变换 当然要从第一类斯特林数的角度来考虑一下 一个排列的type定义 排旗公式 应用-共轭排 ...

  5. K8S安全学习

    k8s安全学习 一.云 云的定义看似模糊,但本质上,它是一个用于描述全球服务器网络的术语,每个服务器都有一个独特的功能.云不是一个物理实体,而是一个庞大的全球远程服务器网络,它们连接在一起,旨在作为单 ...

  6. Kafka 消费者读取数据

    消费者不需要自行管理 offset(分组+topic+分区),系统通过 broker 将 offset 存放在本地.低版本通过 zk 自行管理.系统自行管理分区和副本情况.消费者断线后会自动根据上一次 ...

  7. 全面了解 Redis 高级特性,实现高性能、高可靠的数据存储和处理

    目录 高性能.高可用.高可扩展性的原理 持久化 RDB持久化 AOF持久化 持久化的配置 RDB配置 AOF配置 持久化的恢复 RDB的恢复 AOF的恢复 RDB和AOF的选择 持久化对性能的影响 数 ...

  8. 微软博客上几篇 Semantic-kernel (SK)文章

    自从最近微软开源Semantic-kernel  来帮助开发人员在其应用程序中使用AI大型语言模型(LLM)以来,Microsoft一直在忙于改进它,发布了有关如何使用它的新指南并发布了5篇文章介绍他 ...

  9. vue:路由守卫

    路由守卫 作用:对路由进行权限控制 配置路由守卫应在暴露前配置 分类:全局守卫.独享守卫.组件内守卫 首先先给需要鉴权的路由设置好meta配置项. meta配置项:是vue-router中的一个对象, ...

  10. Ceres 自动求导解析-从原理到实践

    Ceres 自动求导解析-从原理到实践 目录 Ceres 自动求导解析-从原理到实践 1.0 前言 2.0 Ceres求导简介 3.0 Ceres 自动求导原理 3.1 官方解释 3.2 自我理解 4 ...