新年趣事之红包--"四边形"不等式优化DP
目录
新年趣事之红包
时间限制: 1 Sec 内存限制: 64 MB
题目描述
xiaomengxian一进门,发现外公、外婆、叔叔、阿姨……都坐在客厅里等着他呢。经过仔细观察,xiaomengxian发现他们所有人正好组成了一个凸多边形。最重要的是,他们每个人手里都拿着一个红包(^o^)。于是非常心急,xiaomengxian决定找一条最短的路线,拿到所有的红包。 假设屋里共有N个人拿着红包,把他们分别从1到N编号。其中,编号为1的人就坐在大门口,xiaomengxian必须从这里出发去拿红包。一条合法的路线必须经过所有的点一次且仅一次。
输入
第一行为一个整数N(1<=N<=800)。 以下N行,每行两个实数Xi,Yi,表示该点的坐标。 各个点按照逆时针顺序依次给出。
输出
一个实数,表示最短的路线长度(保留三位小数)。
思路
此题在数据 / OJ 差的情况下,是可以用鬼贪心卡过的。但是这毕竟不是正解,正如标题上说的,要用动态规划求解,还要用“四边形不等式”来优化DP,其实,要是不用四边形不等式,还想不出是DP方法呢。
首先,
题目中说了,所有人正好组成了一个凸多边形,所以,题目是在提示我们,要用到凸多边形的性质。就拿四边形举例吧。
我们会发现,它的边长是符合四边形不等式的!
即 AD + BC > AB + CD
我们若从任意一点(A)出发,要最终走出一条最短路的话,先走对角线(AD)是不可取的,因为根据路径的特点,这样最终总会走过另一条不优的对角线(BC),与其如此,还不如先走一条与之相连的边(AB),最终的路径才可能是最优的 。
可以根据三角形三边关系去证明。
同理,
再看一个多边形。
从一个顶点A出发,若是走对角线,那么下一步只能走C或D,那么最后总会连一条不优的对角线交叉。
也就是说,在一个多边形的一点开始,第一步只能走相邻点。
整条路就可以用DP来解决。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#define min(x,y) (x < y ? x : y)
using namespace std;
int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + s - '0';s = getchar();}
return x * f;
}
int n,m,i,j,k,s,o,t;
double x[805],y[805],dp[805][805][2],ans;
double HF(int a,int b) {
return sqrt(pow(x[a] - x[b],2) + pow(y[a] - y[b],2));
}
double DP(int l,int r,int f) {
if(dp[l][r][f] > 0.0) return dp[l][r][f];
if(l == r) return 0.0;
int u = l + 1,v = l - 1;
if(u > n) u = 1; if(v < 1) v = n;
if(f) dp[l][r][f] = min(HF(l,u) + DP(u,r,1),HF(l,r) + DP(r,u,0));
else dp[l][r][f] = min(HF(l,v) + DP(v,r,0),HF(l,r) + DP(r,v,1));
return dp[l][r][f];
}
int main() {
n = read();
for(i = 1;i <= n;i ++) {
scanf("%lf%lf",&x[i],&y[i]);
}
ans = DP(1,n,1);
for(i = 2;i <= n;i ++) {
ans = min(ans,DP(i,i - 1,1));
}
printf("%.3lf",ans);
return 0;
}
新年趣事之红包--"四边形"不等式优化DP的更多相关文章
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- printf 输出前导0
printf ("%3d\n", 5); printf ("%03d\n", 5); 输出为
- SpringCloudAlibaba分布式流量控制组件Sentinel实战与源码分析(上)
概述 定义 Sentinel官网地址 https://sentinelguard.io/zh-cn/index.html 最新版本v1.8.4 Sentinel官网文档地址 https://senti ...
- NC18979 毒瘤xor
NC18979 毒瘤xor 题目 题目描述 小a有 \(N\) 个数 \(a_1, a_2, ..., a_N\) ,给出 \(q\) 个询问,每次询问给出区间 \([L, R]\) ,现在请你找到一 ...
- C# / VB.NET 将Html转为Word
本文分享以C#程序代码为例,实现将Html文件转换Word文档的方法(附VB.NET代码).在实际转换场景中可参考本文的方法,转换前,请按照如下方法引用Word API的dll文件到Visual St ...
- 使用Thread类和Runnable接口实现多线程的区别
使用Thread类和Runnable接口实现多线程的区别 先看两种实现方式的步骤: public class ThreadDemo{ public static void main(String[] ...
- SSH隧道代理
应用场景: A机器可以通过SSH连接到B机器,然后A想用B的身份访问B所在的资源(主要用于浏览器访问) 命令: A机器通过ssh与B建立连接,并暴露3128端口:ssh -N -D 127.0.0.1 ...
- gpg加解密异常
在本地windows电脑和开发环境(linux) ,都不报错,但是在测试环境(linux) 上报错. 报错信息 org.bouncycastle.openpgp.PGPException: Excep ...
- AtCoder Beginner Contest 261E // 按位思考 + dp
题目链接:E - Many Operations (atcoder.jp) 题意: 给定一个数x,以及n个操作(ti,ai): 当 t = 1 时,将 x & a 当 t = 2 时,将 x ...
- 丽泽普及2022交流赛day15 社论
前言 link 太牛逼了,补完我一定放代码 . orz 越看越牛逼 orz . 时间复杂度都是口胡,不要信 . 以下是目录 目录 目录 前言 A 题面 题解 代码 B 题面 题解 代码 C 题面 题解 ...
- 秋季招聘季如何制作一款“秀色可餐”的简历?由ShareLatex和Python3打造
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_161 秋招季还有两个月就到了,即所谓的"金九银十".疫情因素导致市场环境不太理想,所以我们更应该未焚而徙薪,未 ...