【python】kNN基础算法--推荐系统
虽然把text转成全部量化是可以的,但是还是需要把text转成numpy的形式(这个是必须掌握的)

在将数据输入到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式。
数据规范化、数据归一化、数据算法化、输出误差分析
代码:
# -*- coding:utf-8 -*-
from numpy import * def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
#结果全部量化,把喜欢不喜欢排名1、2、3
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') import matplotlib
import matplotlib.pyplot as plt
# matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet)) #创建新的返回矩阵
m = dataSet.shape[0] #得到数据集的行数 shape方法用来得到矩阵或数组的维数
normDataSet = dataSet - tile(minVals,(m,1)) #tile:numpy中的函数。tile将原来的一个数组minVals,扩充成了m行1列的数组
normDataSet = normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals normMat,ranges,minVals = autoNorm((datingDataMat)) import operator
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def datingClassTest():
hoRatio = 0.10
ErrorCount = 0.0
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
count = int(m*hoRatio) #这里需要整型化
for i in range(count):
#算法里使用的数据是count(总数)还是i(当前数),
#逐渐被测试的数据inX使用[i,:],但是数据集使用count
# 输入参数:normMat[i,:]为测试样例,表示归一化后的第i行数据
# normMat[numTestVecs:m,:]为训练样本数据,样本数量为(m-numTestVecs)个
# datingLabels[numTestVecs:m]为训练样本对应的类型标签
# k为k-近邻的取值
classifierResult = classify0(normMat[i,:],normMat[count:m,:],datingLabels[count:m],4)
print "the classifier came back with:%d,the real answer is :%d"\
% (classifierResult,datingLabels[i])
if (classifierResult != datingLabels[i]) : ErrorCount += 1.0
print "the total error rate is :%f" % (ErrorCount/float(count)) def classifyPerson():
resultList = ['not at all','in small doses','in large doses']
#float定义了输入的类型
percentTats = float(raw_input(
"percentage of time spent playing video games?"))
ffMiles = float(raw_input("frequent flier miles earned per year?"))
iceCream = float(raw_input("liters of ice cream consumed per year?"))
datingDataMat,datingLabels = file2matrix(("datingTestSet2.txt"))
normMat,ranges,minVals = autoNorm(datingDataMat)
#将输入的数据数组化
inArr = array([ffMiles,percentTats,iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print "You will probably like this person:",resultList[classifierResult - 1]

【python】kNN基础算法--推荐系统的更多相关文章
- 【python】kNN基础算法--推荐系统(辅助研究)
# -*- coding:utf-8 -*- # import numpy as np #import numpy 和from numpy import *是不一样的 # # # import num ...
- 【python】kNN基础算法--分类和推荐系统
(1)k-近邻算法是分类数据最简单最有效的方法. (2)在将数据输入到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式. (3)所有的推荐模型都可以使用这个算法,只要将结果量化就行了,主要 ...
- Python之基础算法介绍
一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...
- python函数基础算法简介
一.多层语法糖本质 """ 语法糖会将紧挨着的被装饰对象名字当参数自动传入装饰器函数中""" def outter(func_name): ...
- Python机器学习基础教程-第1章-鸢尾花的例子KNN
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...
- KNN分类算法及python代码实现
KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习, ...
- Python 从基础------进阶------算法 系列
1.简介 关 ...
- python每日经典算法题5(基础题)+1(中难题)
现在,越来越多的公司面试以及考验面试对算法要求都提高了一个层次,从现在,我讲每日抽出时间进行5+1算法题讲解,5是指基础题,1是指1道中等偏难.希望能够让大家熟练掌握python的语法结构已经一些高级 ...
- python每日经典算法题5(基础题)+1(较难题)
一:基础算法题5道 1.阿姆斯特朗数 如果一个n位正整数等于其各位数字的n次方之和,则称该数为阿姆斯特朗数.判断用户输入的数字是否为阿姆斯特朗数. (1)题目分析:这里要先得到该数是多少位的,然后再把 ...
随机推荐
- springboot+atomikos+druid 数据库连接失效分析
一.起因 最近查看系统的后台日志,经常发现这样的报错信息:The last package successfully received from the server was 40802382 mil ...
- 微信小程序之video组件与cover-view组件和cover-image组件灵活应用
前言:最近忙着赶项目,没时间更博:希望和大家一起学习一起进步. 本人遇到的坑,以及爬出坑的方法:在某个微信小程序项目中,有这样一个需求:在滑块swiper组件和swiper-item组件中嵌套vide ...
- visual studio版本 宏
转载请注明来源:https://www.cnblogs.com/hookjc/ MSVC++ 12.0 _MSC_VER == 1800 (Visual Studio 2013) MSVC++ 11. ...
- Foundation框架介绍
1.Foundation框架介绍 什么是框架? 众多功能\API的集合 框架是由许多类.方法.函数.文档按照一定的逻辑组织起来的集合,以便使研发程序变得更容易,在OS X下的Mac操作系统中大约有80 ...
- NSString 类介绍及用法
1.NSString常见方法 NSString是 Objective-C 中核心处理字符串的类之一 创建常量字符串,注意使用"@"符号. NSString *astring = @ ...
- Linux常用命令精华讲解 上部 (下部下回分解)不要催很忙的
Linux常用命令讲解 1.Linux命令基础 2.Linux命令帮助 3.目录与文件的基操 1.Shell是系统中运行的一种特殊程序在用户和内核之间充当"翻译官"的角色,登录li ...
- go基础——变量与常量
变量 package main import "fmt" /* 变量:variable 概念:一小块内存,用于存储数据,在程序运行过程中数值可以改变 特性:静态语言,强类型语言 * ...
- Docker入门的亿点点学习
前段时间花了些时间学习了亿点点docker,也算是入门了吧,顺便记了一下笔记拿出来分享给想要接触docker的兄弟们. 没有服务器的兄嘚可以去腾讯云或者阿里云领取免费的试用产品嗷,如果已经领取过了,又 ...
- 2、Linux基础--常用系统命令与快捷键
笔记 1.昨日问题 1.mac系统虚拟机的问题 2.虚拟机连不上网 1.xshell连接不上 1.虚拟网络编辑器和vmnat8网卡设置错误 2.ping不通百度 1.DNS IP编写错误 2.网卡的网 ...
- Redis 竟然能用 List 实现消息队列
分布式系统中必备的一个中间件就是消息队列,通过消息队列我们能对服务间进行异步解耦.流量消峰.实现最终一致性. 目前市面上已经有 RabbitMQ.RochetMQ.ActiveMQ.Kafka等,有人 ...