Numpy库基础___一
ndarray一个强大的N维数组对象Array
•ndarray的建立(元素默认浮点数)
- 可以利用list列表建立ndarray
import numpy as np
list =[0,1,2,3]
从列表类型建立
x = np.array(list)
print(x)
#[0 1 2 3]
- 可以利用tuple元组建立ndarray
import numpy as np
从元组类型建立
x = np.array((4,5,6,7))
print(x)
#[4 5 6 7]
- 可以从列表和元组混合类型创建(所包含数据个数相同就可混合使用,一般不建议)
x = np.array([list,(4,5,6,7)],dtype=np.float32)
print(x)
#[0,1,2,3,4,5,6,7]
- 利用arange(类似range)
x = np.arange(10)
print(x)
#[0 1 2 3 4 5 6 7 8 9]
- .ones((n,m)) 生成全1的n*m的数组
x = np.ones((3,6))
print(x)
#[[1. 1. 1. 1. 1. 1.]
# [1. 1. 1. 1. 1. 1.]
#[1. 1. 1. 1. 1. 1.]] x = np.ones((3,4,5))
print(x)
#[[[1. 1. 1. 1.]
# [1. 1. 1. 1.]
# [1. 1. 1. 1.]] # [[1. 1. 1. 1.]
# [1. 1. 1. 1.]
# [1. 1. 1. 1.]]]
- .zeros((n,m))生成全0的n*m的数组
x = np.zeros((3,6),dtype = np.int32)
print(x)
#[[0 0 0 0 0 0]
# [0 0 0 0 0 0]
# [0 0 0 0 0 0]]
- .eye(n)生成对角线为1,其余全为0的方阵
x = np.eye(5)
print(x)
#[[1. 0. 0. 0. 0.]
# [0. 1. 0. 0. 0.]
# [0. 0. 1. 0. 0.]
# [0. 0. 0. 1. 0.]
# [0. 0. 0. 0. 1.]]
- .full(shape,vale)生成一个shape的矩阵,每个元素都是val
x = np.full((3,4),5)
print(x)
#[[5 5 5 5]
# [5 5 5 5]
# [5 5 5 5]]
- .ones_like(x)根据数组x的shape形成一个全为1的数组
x = full((3,4),5)
a = np.ones_like(x)
print(a)
#[[1 1 1 1]
# [1 1 1 1]
# [1 1 1 1]]
- .zeros_likes(x)根据数组x的shape形成一个全为0的数组
x = full((3,4),5)
a = np.zeros_like(x)
print(a)
#[[0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]]
- .full_likes(x)根据数组x的形状生成一个数组,值为val
x = full((3,4),5)
a = np.full_like(x,0)
print(a)
#[[0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]]
- .linespace(begin,end,val,endpoint)根据起止数据等距的填充数据,形成数组
#endpoint默认为True,表示end是其中的元素
x = np.linespace(1,10,4)
print(x)
#[ 1. 4. 7. 10.]
#endpoint为False,表示end不是其中的元素
x = np.linespace(1,10,4,endpoint=True)
print(x)
#[1. 3.25 5.5 7.75]
- .concatenate()将两个或多个数组合并成一个新的数组,axis默认为0
b = np.full((2,1,3),5)
a = np.full((2,1,3),1)
print(b)
print(a)
#b
#[[[5 5 5]]
#
# [[5 5 5]]]
#a
#[[[1 1 1]]
#
# [[1 1 1]]] x = np.concatenate((a,b))
print(x)
#[[[1 1 1]]
#
# [[1 1 1]]
#
# [[5 5 5]]
#
# [[5 5 5]]] x = np.concatenate((a,b),axis=1)
print(x)
#[[[1 1 1]
# [5 5 5]]
#
# [[1 1 1]
# [5 5 5]]] x = np.concatenate((a,b),axis=2)
print(x)
#[[[1 1 1 5 5 5]]
#
# [[1 1 1 5 5 5]]]
Numpy库基础___一的更多相关文章
- Numpy库基础___五
Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0 ...
- Numpy库基础___四
Numpy数据存取 •数据的csv文件的存取 只能有效存取和读取一维和二维数据 a = np.arange(100).reshape(5,20) #用delimiter分割,默认为空格 np.save ...
- Numpy库基础___三
ndarray一个强大的N维数组对象Array •ndarray的操作 索引 a = np.arange(24).reshape((2,3,4)) print(a) #[[[ 0 1 2 3] # [ ...
- Numpy库基础___二
ndarray一个强大的N维数组对象Array •ndarray的变换 x.reshape(shape)重塑数组的shape,要求元素的个数一致,不改变原数组 x = np.ones((2,3,4), ...
- $python数据分析基础——初识numpy库
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: ...
- Python基础——numpy库的使用
1.numpy库简介: NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的 ...
- Python数据分析numpy库
1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...
- 数据分析与展示——NumPy库入门
这是我学习北京理工大学嵩天老师的<Python数据分析与展示>课程的笔记.嵩老师的课程重点突出.层次分明,在这里特别感谢嵩老师的精彩讲解. NumPy库入门 数据的维度 维度是一组数据的组 ...
- 初识NumPy库-基本操作
ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...
随机推荐
- HGAME-week2-web-wp
hgame第二周总结 1.webpack-engine 我不懂,但是真的刚打开就出来了,一脸懵逼(wp说是sourcemap没关 hgame{D0nt_f0r9et_2_ClOs3_S0urce_m@ ...
- VMware Workstation批量克隆虚拟机
由于经常要用vmware创建虚拟机做一些测试,集群的测试使用连接克隆,可以节省磁盘的空间(如果不是因为穷,没人愿意向生活低头) 于是找到了这个bat脚本,做了一些修改和学习,为大家加上了一些注释,方便 ...
- MXNet源码分析 | KVStore进程间通信
本文主要基于MXNet1.6.0版本进行分析. 在上一篇文章中,我们分析了MXNet中KVStore的进程内通信机制.在这篇文章中,我们主要分析KVStore如何进行多节点分布式通信. 在KVStor ...
- INTERSPEECH 2015 | Scalable Distributed DNN Training Using Commodity GPU Cloud Computing
一般来说,全连接层的前向和后向传递所需的计算量与权重的数量成正比.此外,数据并行训练中所需的带宽与可训练权重的数量成比例.因此,随着每个节点计算速度的提高,所需的网络带宽也随之增加.这篇文章主要是根据 ...
- Eclipse插件拓展点
一.新建一个项目,不使用模板 二.增加"hello"拓展点 1. 打开插件描述文件的Extensions页 新建一个插件后,会自动打开插件清单文件编辑器,也可以通过META-INF ...
- 【基础篇】js对本地文件增删改查--删
前置条件: 1. 本地有安装node,点击传送门 项目目录: 1. msg.json内容 { "data": [ { "id": 1, "name&q ...
- c++隐式类型转换存在的陷阱
目录 目标代码 构造函数定义的隐式类型转换 分析a1 分析a2 分析a3 目标代码 旨在弄懂下面的代码,明确变量a1,a2,a3在创建时编译器究竟干了那些事: #include<iostream ...
- SpringBoot+MybatisPlus+Mysql+Sharding-JDBC分库分表实践
一.序言 在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量.当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术. 本文将基于Spri ...
- 录毛线脚本,直接手写接口最简洁的LoadRunner性能测试脚本(含jmeter脚本)
近日翻看了下招聘信息,很多都要求loadrunner和jmeter这两款工具,毕竟是性能测试的主流客户端并发工具. 录制的问题 做性能脚本是性能测试的基本功,loadrunner和jmeter这两款工 ...
- 号称BI商业智能界的“四大天王”
基于云部署的现代商业智能与数据分析平台(国内似乎只有应用上云,数据本地化的趋势)正在逐步占据主流市场.随着市场在易用性和增强分析(augmented analytics)的变革,数据与分析领导者正在逐 ...