题目

小 T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 \(n\) 个矿石,从 \(1\) 到 \(n\) 逐一编号,每个矿石都有自己的重量 \(w_i\) 以及价值 \(v_i\) 。检验矿产的流程是:

1 、给定 \(m\) 个区间 \([l_i,r_i]\);

2 、选出一个参数 \(W\);

3 、对于一个区间 \([l_i,r_i]\),计算矿石在这个区间上的检验值 \(y_i\):

\[y_i=\sum\limits_{j=l_i}^{r_i}[w_j \ge W] \times \sum\limits_{j=l_i}^{r_i}[w_j \ge W]v_j
\]

其中 \(j\) 为矿石编号。

这批矿产的检验结果 \(y\) 为各个区间的检验值之和。即:\(\sum\limits_{i=1}^m y_i\)

若这批矿产的检验结果与所给标准值 \(s\) 相差太多,就需要再去检验另一批矿产。小 T 不想费时间去检验另一批矿产,所以他想通过调整参数 \(W\) 的值,让检验结果尽可能的靠近标准值 \(s\),即使得 \(|s-y|\) 最小。请你帮忙求出这个最小值。

解析

这是一道比较清晰明了的二分答案。

可以看出整个式子的自变量是 \(W\),因变量是此时得到的 \(y\)。

那么就来判断是否可以运用二分来解,首先判断单调性:

当 \(W\) 比最轻的矿石质量还小时,所有的矿石都可以参与运算,计算出来的 \(y\) 必定最大。

当 \(W\) 比最重的矿石质量还大时,所有的矿石都不能参与运算,计算出来的 \(y\) 必定最小。

因此,\(W\) 越小,参与计算的数就越多,\(y\) 也就越大。

所以单调性出来了,我们就可以在区间内通过枚举 \(W\) 来得到答案了。

然后就 \(TLE\) 了……

优化

查看代码发现,二分部分肯定是不会有什么超时的地方,那就是 check 函数的问题了。

发现在每次计算过程中由于重复计算造成了大量的浪费,于是考虑用前缀和优化。

使用 sum_n[i] 来表示区间中合格部分数量,sum_v[i] 来记录区间中合格部分价值。

最后进行计算。

#include<iostream>
#include<algorithm>
#include<cstdio>
#define int long long using namespace std; int n,m,s;
int w[200500],v[200500];
int l[200500],r[200500]; int sum_n[200500],sum_v[200500]; long long ans = 0; void init()
{
scanf("%lld%lld%lld",&n,&m,&s);
for(int i = 1;i <= n; i++)
scanf("%lld%lld",&w[i],&v[i]);
for(int i = 1;i <= m; i++)
scanf("%lld%lld",&l[i],&r[i]); return ;
} long long check(int W)
{
long long ans = 0;
for(int i = 1;i <= n; i++)
{
if( W > w[i] )// 要用前缀和,不然会炸掉!!!
{
sum_n[i] = sum_n[i-1];
sum_v[i] = sum_v[i-1];
}
else
{
sum_n[i] = sum_n[i-1] + 1;
sum_v[i] = sum_v[i-1] + v[i];
}
} for(int i = 1;i <= m; i++)
{
long long a,b;
a = sum_v[r[i]] - sum_v[l[i]-1];
b = sum_n[r[i]] - sum_n[l[i]-1];
ans += a*b;
} return ans;
} long long _abs(long long a)
{
if( a > 0 )
return a;
return -a;
} signed main()
{
init(); int left = 0,right = 1000000,mid; while( left <= right )
{
mid = (left + right)>>1;
if( check(mid) > s )
left = mid + 1;
else
right = mid - 1;
}
ans = _abs(check(left) - s); if( _abs(check(right) - s) < ans )
ans = _abs(check(right) - s); printf("%lld",ans);
return 0;
}

总结

题总体来说并不算难,但细节仍需要注意。

例如在考试中,就很有可能会忘记前缀和优化的问题,导致失去 30 分。

还有一直存在的 long long 的问题,同样会影响数十分。

要注重时间复杂度,重视算法的优化。做题时一定要每道题计算时间复杂度,不然考场追悔莫及。

P1314 聪明的质监员(题解)的更多相关文章

  1. 洛谷P1314 聪明的质监员 题解

    题目 聪明的质监员 题解 这道题和之前Sabotage G的那道题类似,都是用二分答案求解(这道题还要简单一些,不需要用数学推导二分条件,只需简单判断一下即可). 同时为了降低复杂度,肯定不能用暴力求 ...

  2. P1314 聪明的质监员(前缀和+二分)

    P1314 聪明的质监员 显然可以二分参数W 统计Y用下前缀和即可. #include<iostream> #include<cstdio> #include<cstri ...

  3. 洛谷P1314 聪明的质监员

    P1314 聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: ...

  4. luogu P1314 聪明的质监员 x

    P1314 聪明的质监员(至于为什么选择这个题目,可能是我觉得比较好玩呗) 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自 ...

  5. luoguP1314 聪明的质监员 题解(NOIP2011)

    P1314 聪明的质监员 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include< ...

  6. Luogu P1314 聪明的质监员(二分+前缀和)

    P1314 聪明的质监员 题意 题目描述 小\(T\)是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有\(n\)个矿石,从\(1\)到\(n\)逐一编号,每个矿石都有自己的重量\(w_i\) ...

  7. NOIP2011聪明的质监员题解

    631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督 ...

  8. 【luogu P1314 聪明的质监员】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1314 二分答案 但是计算区间贡献的时候 直接暴力会挂 前缀和加速 #include <cstdio&g ...

  9. 『题解』洛谷P1314 聪明的质监员

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 小T是一名质量监督员,最近负责检验一批矿产的质量.这 ...

  10. 洛谷 P1314 聪明的质监员 —— 二分

    题目:https://www.luogu.org/problemnew/show/P1314 显然就是二分那个标准: 当然不能每个区间从头到尾算答案,所以要先算出每个位置被算了几次: 不知为何自己第一 ...

随机推荐

  1. HashMap底层原理及jdk1.8源码解读

    一.前言 写在前面:小编码字收集资料花了一天的时间整理出来,对你有帮助一键三连走一波哈,谢谢啦!! HashMap在我们日常开发中可谓经常遇到,HashMap 源码和底层原理在现在面试中是必问的.所以 ...

  2. js对象结构赋值const {XXX } =this

    样例1: const { xxx } = this.state; 上面的写法是es6的写法,其实就相当于: const xxx = this.state.xxx 样例2: const {comment ...

  3. Docker搭建kafka及监控

    环境安装 docker安装 yum update yum install docker # 启动 systemctl start docker # 加入开机启动 systemctl enable do ...

  4. 浅谈-动态路由之OSPF的理解

    路由 在网络中,路由相当于就是一张地图,让路由器知道这个对应的IP数据包应该往哪端口.网段走:而这个"地图"我们称之为路由表,不同的目的IP路由表的下一个跳也不同,其生成方式有又有 ...

  5. python锦鲤

    今日内容目录 垃圾回收机制 流程控制理论& 流程控制之分支结构& 流程控制之循环结果& 详情 Python垃圾回收机制 """ 有一些语言,内存空 ...

  6. 最长公共前缀(Java)

    编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入:strs = ["flower","flo ...

  7. PHP Phar反序列化学习

    PHP Phar反序列化学习 Phar Phar是PHP的压缩文档,是PHP中类似于JAR的一种打包文件.它可以把多个文件存放至同一个文件中,无需解压,PHP就可以进行访问并执行内部语句. 默认开启版 ...

  8. 那齐博x3又什么什么?

    那齐博x3又什么什么? 齐博x3是齐博X1/齐博x2之后的升级版本. 主要优化圈子系统

  9. 齐博x1小程序集群一个重要功能升级,可以根据圈子会员组显示不同的菜单。

    如下图所示,虽然之前圈子小程序可以自定义会员中心菜单,但是存在一个问题,就是所有会员,比如圈主与普通会员的菜单都将是一样的. 现在升级后,就可以设置不同的圈子会员组,拥有不同的菜单. 比如一个商家,店 ...

  10. 3.CBV视图之csrf补充

    CBV使用csrf装饰器关闭/开启 csrf验证,直接在函数上加装饰器无效的 #方法1 from django.views import View from django.views.decorato ...