(Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
题目大意:
如果一个数字将1到n的每个数字都使用且只使用了一次,我们将其称其为一个n位的pandigital数。例如,2143是一个4位的pandigital数,并且是一个质数。
最大的n位pandigital质数是多少?
//(Problem 41)Pandigital prime
// Completed on Fri, 26 Jul 2013, 13:01
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool isprim(int n)
{
int i=;
if(n==) return false;
for(; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool pandigital(int n)
{
char s[],d[]={};
int i=;
sprintf(s,"%d",n);
int len=strlen(s);
while(i<len)
{
switch(s[i]-'')
{
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
default: break;
}
i++;
}
for(i=; i<=len; i++)
{
if(d[i]!=) return false;
}
if(!isprim(n)) return false;
else return true;
} int main()
{
int i=;
while(i>)
{
if(pandigital(i))
{
printf("%d\n",i);
break;
}
i=i-;
}
return ;
}
|
Answer:
|
7652413 |
(Problem 41)Pandigital prime的更多相关文章
- (Problem 7)10001st prime
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. ...
- (Problem 3)Largest prime factor
The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
- (Problem 37)Truncatable primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...
- (Problem 35)Circular primes
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
随机推荐
- html基础标签-2-textarea文本域
textarea文本域 <!doctype html> <html lang='zh-cn'> <head> <meta charset='utf-8'> ...
- 存储过程获取新插入记录ID
create procedure sp_AddUser1@Name nvarchar(200), @Remark nvarchar(200),@Flag int as begin declare @i ...
- ViEmu for VS2013-3.2.1 破解(转)
ViEmuVS2013-3.2.1 破解 VS升级到2013后,作为一个Vimer,自然需要更新最新的ViEmu插件,因为现在离了Vim,写代码已经寸步难行了. ViEmu 3.2.1的破解其实和 ...
- WinSock网络编程基础(3)server
上一篇讲的是简单的发送数据的客户端的实现.接下来讲的是如何实现收发数据服务器.这里说的服务器其实就是一个进程,它需要等待任意数量的客户端与之建立起连接,以便响应它们的请求. 服务器必须在已知的名称上监 ...
- HDU2955-Robberies
描述: The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usual ...
- springmvc中关于静态资源的放行
参考:http://blog.csdn.net/fujiakai/article/details/52504525 方法1. 修改web.xml文件,增加对静态资源的url映射,要加在org.spri ...
- codeforces 377B Preparing for the Contest 二分+优先队列
题目链接 给你m个bug, 每个bug都有一个复杂度.n个人, 每个人有两个值, 一个是能力值, 当能力值>=bug的复杂度时才可以修复这个bug, 另一个是雇佣他需要的钱,掏一次钱就可以永久雇 ...
- Hadoop基准测试(转载)
<hadoop the definitive way>(third version)中的Benchmarking a Hadoop Cluster Test Cases的class在新的版 ...
- Android中各种Adapter的使用方法
1.概念 Adapter是连接后端数据和前端显示的适配器接口.是数据和UI(View)之间一个重要的纽带.在常见的View(ListView,GridView)等地方都须要用到Adapter.例如以下 ...
- php入门微理解
1.php是什么?(来自百度百科) php:Hypertext preprocessor(超文本预处理器).一种开源脚本语言.主要用于web开发. 2.与其它语言的关系 介于HTML和C/C++,Ja ...