We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.

What is the largest n-digit pandigital prime that exists?

题目大意:

如果一个数字将1到n的每个数字都使用且只使用了一次,我们将其称其为一个n位的pandigital数。例如,2143是一个4位的pandigital数,并且是一个质数。

最大的n位pandigital质数是多少?

//(Problem 41)Pandigital prime
// Completed on Fri, 26 Jul 2013, 13:01
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool isprim(int n)
{
int i=;
if(n==) return false;
for(; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool pandigital(int n)
{
char s[],d[]={};
int i=;
sprintf(s,"%d",n);
int len=strlen(s);
while(i<len)
{
switch(s[i]-'')
{
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
default: break;
}
i++;
}
for(i=; i<=len; i++)
{
if(d[i]!=) return false;
}
if(!isprim(n)) return false;
else return true;
} int main()
{
int i=;
while(i>)
{
if(pandigital(i))
{
printf("%d\n",i);
break;
}
i=i-;
}
return ;
}
Answer:
7652413

(Problem 41)Pandigital prime的更多相关文章

  1. (Problem 7)10001st prime

    By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. ...

  2. (Problem 3)Largest prime factor

    The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...

  3. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  6. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  7. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...

  8. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  9. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

随机推荐

  1. SQL SERVER 2000/2005/2008数据库数据迁移到Oracle 10G细述

    最近参与的一个系统涉及到把SQL Server 2k的数据迁移到Oracle 10G这一非功能需求.特将涉及到相关步骤列举如下供大家参考: 环境及现有资源: 1.OS: Windows 7 Enter ...

  2. Ninject简介(转)

    1.为什么要用Ninject? Ninject是一个IOC容器用来解决程序中组件的耦合问题,它的目的在于做到最少配置.其他的的IOC工具过于依赖配置文件,需要使用assembly-qualified名 ...

  3. BootStrap 模态框禁用空白处点击关闭问题

    模态框为信息编辑窗口,涉及好多内容,填了半天,若一不小心点了空白处,那就前功尽弃了..... 所以我们很有必要禁用鼠标点击空白处模态框关闭的功能. $('#myModal').modal({backd ...

  4. T-SQL语句中中括号([])的用法是什么,什么时候该用

    加了[]是为了防止歧义,使计算机能识别.有些字段可能是关键字,这时候你直接用字段名就会报错,如果加了[]就可以正常执行了

  5. 2014.9.15HTML

    <html> <title> </title> ——页面标题 <head> </head> ——网页上的控制信息 <body> ...

  6. .net string format

    转自:http://www.cnblogs.com/jobs2/p/3948049.html 转自:http://jingyan.baidu.com/article/48206aeaf8c52f216 ...

  7. HTML中小问题

    1.a标签不添加href这个属性时,不会出现鼠标变成手型~

  8. MySQL 基础学习

    http://www.w3school.com.cn/sql/ 1.limit x,y 或 limit z  :选取从x开始的y条数据  或  选取最开始的 z条数据 , 2.like '%N%' : ...

  9. python初探-数据类型

    数据类型 可以使用BIF type()来查看对象的类型 数字 int float long 布尔(bool) True 机内表示1,机器识别非0 False 机内表示0,机器识别0 空值 None 字 ...

  10. SQL Server 内存不足引起的并发症

    第一:cpu 1.内存不足就会有频繁的页面调入调出.这个过程是要有cpu的参与的.所以这个要影响cpu! 2.内存不足可能会引有用起执行计划被清除.当起次要执行时.这个就要重编译一次!