We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.

What is the largest n-digit pandigital prime that exists?

题目大意:

如果一个数字将1到n的每个数字都使用且只使用了一次,我们将其称其为一个n位的pandigital数。例如,2143是一个4位的pandigital数,并且是一个质数。

最大的n位pandigital质数是多少?

//(Problem 41)Pandigital prime
// Completed on Fri, 26 Jul 2013, 13:01
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool isprim(int n)
{
int i=;
if(n==) return false;
for(; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool pandigital(int n)
{
char s[],d[]={};
int i=;
sprintf(s,"%d",n);
int len=strlen(s);
while(i<len)
{
switch(s[i]-'')
{
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
case : d[]++;break;
default: break;
}
i++;
}
for(i=; i<=len; i++)
{
if(d[i]!=) return false;
}
if(!isprim(n)) return false;
else return true;
} int main()
{
int i=;
while(i>)
{
if(pandigital(i))
{
printf("%d\n",i);
break;
}
i=i-;
}
return ;
}
Answer:
7652413

(Problem 41)Pandigital prime的更多相关文章

  1. (Problem 7)10001st prime

    By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. ...

  2. (Problem 3)Largest prime factor

    The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...

  3. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  6. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  7. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...

  8. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  9. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

随机推荐

  1. html基础标签-2-textarea文本域

    textarea文本域 <!doctype html> <html lang='zh-cn'> <head> <meta charset='utf-8'> ...

  2. 存储过程获取新插入记录ID

    create procedure sp_AddUser1@Name nvarchar(200), @Remark nvarchar(200),@Flag int as begin declare @i ...

  3. ViEmu for VS2013-3.2.1 破解(转)

    ViEmuVS2013-3.2.1 破解   VS升级到2013后,作为一个Vimer,自然需要更新最新的ViEmu插件,因为现在离了Vim,写代码已经寸步难行了. ViEmu 3.2.1的破解其实和 ...

  4. WinSock网络编程基础(3)server

    上一篇讲的是简单的发送数据的客户端的实现.接下来讲的是如何实现收发数据服务器.这里说的服务器其实就是一个进程,它需要等待任意数量的客户端与之建立起连接,以便响应它们的请求. 服务器必须在已知的名称上监 ...

  5. HDU2955-Robberies

    描述: The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usual ...

  6. springmvc中关于静态资源的放行

    参考:http://blog.csdn.net/fujiakai/article/details/52504525 方法1. 修改web.xml文件,增加对静态资源的url映射,要加在org.spri ...

  7. codeforces 377B Preparing for the Contest 二分+优先队列

    题目链接 给你m个bug, 每个bug都有一个复杂度.n个人, 每个人有两个值, 一个是能力值, 当能力值>=bug的复杂度时才可以修复这个bug, 另一个是雇佣他需要的钱,掏一次钱就可以永久雇 ...

  8. Hadoop基准测试(转载)

    <hadoop the definitive way>(third version)中的Benchmarking a Hadoop Cluster Test Cases的class在新的版 ...

  9. Android中各种Adapter的使用方法

    1.概念 Adapter是连接后端数据和前端显示的适配器接口.是数据和UI(View)之间一个重要的纽带.在常见的View(ListView,GridView)等地方都须要用到Adapter.例如以下 ...

  10. php入门微理解

    1.php是什么?(来自百度百科) php:Hypertext preprocessor(超文本预处理器).一种开源脚本语言.主要用于web开发. 2.与其它语言的关系 介于HTML和C/C++,Ja ...