The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.

Find the sum of the only eleven primes that are both truncatable from left to right and right to left.

NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.

题目大意:

3797这个数很有趣。它本身是质数,而且如果我们从左边不断地裁去数字,得到的仍然都是质数:3797,797,97,7。而且我们还可以从右向左裁剪:3797,379,37,3,得到的仍然都是质数。

找出全部11个这样从左向右和从右向左都可以裁剪的质数。
注意:2,3,5和7不被认为是可裁剪的质数。

//(Problem 37)Truncatable primes
// Completed on Thu, 31 Oct 2013, 13:12
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool isprim(int n)
{
int i=;
if(n==) return false;
for(; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool truncatable_prime(int n)
{
int i,j,t,flag=;
char s[];
int sum=;
sprintf(s,"%d",n);
int len=strlen(s); if(!isprim(s[]-'') || !isprim(s[len-]-'')) return false; for(i=; i<len-; i++)
{
t=s[i]-'';
if(t== || t== || t== || t== || t== || t==) return false;
} for(i=; i<len-; i++)
{
for(j=i; j<len-; j++)
{
sum+=s[j]-'';
sum*=;
}
sum+=s[j]-'';
if(!isprim(sum)) return false;
sum=;
}
j=len-;
i=;
while(j>i)
{
for(i=; i<j; i++)
{
sum+=s[i]-'';
sum*=;
}
sum+=s[i]-'';
if(!isprim(sum)) return false;
sum=;
i=;
j--;
}
return true;
} int main()
{
int sum,count;
sum=count=;
int i=;
while()
{
if(isprim(i) && truncatable_prime(i))
{
count++;
sum+=i;
//printf("%d\n",i);
}
i=i+;
if(count==) break;
}
printf("%d\n",sum);
return ;
}
Answer:
748317

(Problem 37)Truncatable primes的更多相关文章

  1. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  2. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  3. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  4. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. linux下安装python3.3.4

    下载安装包 # wget http://www.python.org/ftp/python/3.3.4/Python-3.3.4.tgz 解压 # tar -xzvf Python-3.3.4.tgz ...

  2. C模块回调Lua函数的两种方法

    作者:ani_di 版权所有,转载务必保留此链接 http://blog.csdn.net/ani_di C模块回调Lua函数的两种方法 lua和C通过虚拟栈这种交互方式简单而又可靠,缺点就是C做栈平 ...

  3. HBA简介及原理

    HBA,即主机总线适配器英文“Host Bus Adapter”缩写.是一个使计算机在服务器和存储装置间提供输入/输出(I/O)处理和物理连接的电路板和/或集成电路适配器. 简介 主机总线适配器(Ho ...

  4. golang printf

    1:  打印包括字段在内的实例的完整信息 同 %+V fmt.Printf("Hello world! %v","hufeng") 输出:Hello world ...

  5. docker基础入门之二

    一.docker文件系统: linuxFS包括boot file system 和 root file system boot file system (bootfs),包含bootloader和ke ...

  6. 关于ue上传图片到七牛云设置key

    多图上传设置key: dialogs文件下面,image文件下面的image.html,链接webuploader.js,不链接webuploader.min.js webuploader.js里面 ...

  7. Jquery 方法大全

    一.JQuery常用的方法 :(JQuery中90%都是方法,没有参数是获取,带参数是设置) $("#id").css('backgroundColor','blue'); .cs ...

  8. MATLAB - 为什么imshow(g,[])可以正常显示,而imshow(g)却显示空白图像?

    Q:为什么imshow(g,[])可以正常显示,而imshow(g)却显示空白图像? A:数据类型如果是double,imshow的处理范围是0-1数据类型如果是uint8,imshow的处理范围是0 ...

  9. 解决mac 10.11 以后 无法使用未签名第三驱动

    解决 最新版 mac 系统 无法使用未签名第三驱动 10.12.多 我的情况是 10.11.4 Beta (15E27e) 使用绿联usb网卡不正常. 下面的命令为检测驱动是否装载的一些命令.sudo ...

  10. [NOIP2013提高组] CODEVS 3287 火车运输(MST+LCA)

    一开始觉得是网络流..仔细一看应该是最短路,再看数据范围..呵呵不会写...这道题是最大生成树+最近公共祖先.第一次写..表示各种乱.. 因为要求运输货物质量最大,所以路径一定是在最大生成树上的.然后 ...