[JXOI2017]数列
一个不太一样的做法
当\(A_{i-1}=x\),称\(A_1\)到\(A_{i-2}\)中大于等于\(A_{i-1}\)的最小值\(R\)为上界,\(A_1\)到\(A_{i-2}\)中小于等于\(A_{i-1}\)的最大值\(L\)为下界。对于一组\((L,R,x)\)显然有\(L\leq x\leq R\),我们下一个能填的数也只能在这个范围内。
当我们\(A_i=y\)的时候,考虑新的上下界分别是谁。
当\(x\leq y\leq R\)的时候,显然小于等于\(y\)中最大的是\(x\),大于等于\(y\)中最大的是\(R\),所以新的下界是\(x\),上界\(R\),三元组变成了\((x,R,y)\)
当\(L\leq y< x\)的时候,新的上界是\(x\),下界是\(L\),三元组变成了\((L,x,y)\)
到这里我们就可以写一个dp了,设\(f_{i,j,k,p}\)表示填了\(i\)个数,末尾三元组的状态是\((j,k,p)\),转移的时候枚举下一位填什么推出下一个三元组即可。状态数是\(O(nr_i^3)\),转移是\(O(r_i)\)的,复杂度是\(O(nr_i^4)\)不是很能接受
再观察一下这个dp的转移,发现它非常别致,我们枚举下一位填的数\(y\)
当\(p\leq y\leq k\),\(f_{i,j,k,p}\)向\(f_{i+1,x,k,y}\)转移,这个转移和\(j\)这一维没有关系
当\(j\leq y< p\),\(f_{i,j,k,p}\)向\(f_{i+1,j,x,y}\)转移,这个转移和\(k\)这一维没有关系
考虑一下是否可以去掉一维,上下界中只保存一个能否进行转移
显然是可以的,设\(dp_{i,j,k}\)表示当前填了\(i\)个数,上/下界为\(j\),末尾填的数为\(k\)。我们强行规定当\(k\leq j\)的时候,\(j\)为上界;当\(k>j\)的时候,\(j\)为下界
即对于原来的\(f_{i,j,k,p}\)拆分成了两个状态\(dp_{i,j,p}\)和\(dp_{i,k,p}\),这两个状态各自完成\(f_{i,j,k,p}\)的一部分转移。其中\(dp_{i,j,p}\)负责\(j\leq y<p\)的转移;\(dp_{i,k,p}\)负责\(p\leq y\leq k\)的转移。注意转移之后得到的仍旧是一个完整的上下界都有的状态,我们还是要把这个状态拆分一下。
转移的时候还是枚举下一位填什么数,根据填的数推出转移的状态即可。注意当一下位填的数和上下界相等时,新的上下界就固定了。
这样的状态数就变成了\(O(nr_i^2)\),复杂度是\(O(nr_i^3)\),不知道为什么跑的比较快,luogu最优解,loj位列rk3
代码
#include<bits/stdc++.h>
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=155;
const int mod=998244353;
inline int qm(int x) {return x>=mod?x-mod:x;}
int h[55],n,o,R,dp[2][maxn][maxn];
int main() {
n=read();for(re int i=1;i<=n;i++) h[i]=read(),R=max(R,h[i]);R++;
for(re int i=1;i<=h[2];++i)
for(re int j=1;j<=h[1];++j) {
if(j>=i) {if(i!=j) dp[0][i][0]++;}
else dp[0][i][R]++;
dp[0][i][j]++;
}
for(re int i=3;i<=n;i++,o^=1) {
memset(dp[o^1],0,sizeof(dp[o^1]));
for(re int j=1;j<=h[i-1];j++)
for(re int k=0;k<=R;++k) {
if(!dp[o][j][k]) continue;
if(k<j) {
for(re int p=k;p<j;p++)
if(p<=h[i]&&p>0) {
if(p==k) {
dp[o^1][p][p]=qm(dp[o^1][p][p]+dp[o][j][k]);
continue;
}
dp[o^1][p][k]=qm(dp[o^1][p][k]+dp[o][j][k]);
dp[o^1][p][j]=qm(dp[o^1][p][j]+dp[o][j][k]);
}
}
else {
for(re int p=j;p<=k;++p)
if(p<=h[i]&&p>0) {
if(p==j||p==k) {
dp[o^1][p][p]=qm(dp[o^1][p][p]+dp[o][j][k]);
continue;
}
dp[o^1][p][j]=qm(dp[o^1][p][j]+dp[o][j][k]);
dp[o^1][p][k]=qm(dp[o^1][p][k]+dp[o][j][k]);
}
}
}
}
int ans=0;
for(re int i=1;i<=h[n];++i)
for(re int j=i;j<=R;++j) ans=qm(ans+dp[o][i][j]);
return !printf("%d\n",ans);
}
[JXOI2017]数列的更多相关文章
- [P4063][JXOI2017]数列(DP)
题目描述 九条可怜手上有一个长度为 n 的整数数列 ri,她现在想要构造一个长度为 n 的,满足如下条件的整数数列 A: • 1 ≤ Ai ≤ ri. • 对于任意 3 ≤ i ≤ n,令 R 为 A ...
- 洛谷P4063 [JXOI2017]数列(dp)
题意 题目链接 Sol 这题想还是不难想的,就是写起来很麻烦,然后去看了一下loj的最短代码表示只能Orz 首先不难发现一条性质:能够选择的区间一定是不断收缩的,而且新的可选区间一定是旧区间的某个位置 ...
- AHOI2018训练日程(3.10~4.12)
(总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...
- [JXOI2017]颜色 线段树求点对贡献
[JXOI2017]颜色 题目链接 https://www.luogu.org/problemnew/show/P4065 题目描述 可怜有一个长度为 n 的正整数序列 Ai,其中相同的正整数代表着相 ...
- [BZOJ5011][JXOI2017]颜色
5011: [Jx2017]颜色 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 84 Solved: 46[Submit][Status][Disc ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- BZOJ1500[NOI2005]维修数列
Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...
- PAT 1049. 数列的片段和(20)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
随机推荐
- 电脑同时安装python2和python3 ,默认使用python3
python3环境变量放在python2前面: 此电脑--属性--高级系统设置--高级--环境变量--系统变量--Path--编辑 D:\Python36\Scripts;D:\Python36;C: ...
- Java内存模型之happens-before原则
我们无法就所有场景来规定某个线程修改的变量何时对其他线程可见,但是我们可以指定某些规则,这规则就是happens-before,从JDK 5 开始,JMM就使用happens-before的概念来阐述 ...
- SCAU大二上Java综合性实验
一.题目要求 实验内容: 1. 已经提供的原始数据:班级成绩单文件 该文件为文本文件,存储某个班的所有学生某门课程的成绩. 例如:2012级计算机科学与技术8班-面向对象程序设计.txt 文件中每行存 ...
- 淘汰赛制_NOI导刊2010提高(01)
题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加该轮的选手按标号从小到大排序后,第1位与第2位比赛,第 ...
- Mac中的brew
最近要研究字体识别tesseract,才了解到brew,惭愧惭愧. 1.brew是一个软件包管理工具,类似于centos下的yum或者ubuntu下的apt-get,非常方便,免去了自己手动编译安装的 ...
- go语言从例子开始之Example17.指针
Go 支持 指针,允许在程序中通过引用传递值或者数据结构 Example: package main import "fmt" func zeroval(ival int){ iv ...
- 容斥原理+补集转化+MinMax容斥
容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...
- Java集合框架是什么?说出一些集合框架的优点?
每种编程语言中都有集合,最初的Java版本包含几种集合类:Vector.Stack.HashTable和Array. 随着集合的广泛使用,Java1.2提出了囊括所有集合接口.实现和算法的集合框架.在 ...
- jquery 给a标签绑定click
一. <div id="main"> <div class="tab-content"> <div class="con ...
- python 常用技巧 — 列表(list)
目录: 1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list) 2. 多个列表对应位置相加(add the correspond ...