At the beginning, the difference between rank and dimension: rank is a property for matrix, while dimension for subspaces. So we can obtain the rank of A, which reveals dimensions of four subspaces(2 from A, 2 from AT).

Important fact: The row space and column space have the same dimension r (the rank of the matrix).  N(A) and N(AT) have dimensions n - rand m - r, to make up thefull nand m. C(A) and C(R) are different subspaces, because row operations reserve row spaces, but change column spaces.

Four subspaces:

Illustration:Notice the relationships between A and R:

1. The row space of R has dimension two, matching the rank. The first two row span the space, and the third row contributes nothing. The pivot rows are independent, so they are a basis for the row space.

A has the same row space as R. Same dimension r and same basis. Row operations don't change row space, because every row in of A is a combination of R.

2. The column space of R has dimension r=2. The number of independent rows is equal to the number of independent columns.The pivot columns are basis of  C(R), and they span the column space.

C(A) has dimension r=2. However, C(A)≠C(R)! The same combinations of the columns are zero (or nonzero) for A and R. Say that another way: Ax = 0 exactly when Rx = 0.

3. The null space of R has the dimension n-r. Apart from pivot columns, there are n-r free variables,giving us n-r special solutions. The combination of them span the null space of R. And the special solutions are a basis of R. The fact is: To generate zero by column combinations, we must set pivot columns always equals zero, then combine free variable columns linearly to span the null space.

A has the same nullspace as R. Same dimension n - r and same basis. Reason: The elimination steps don't change the solutions.

4. The nul space of RT has dimension m-r, it is to generate zero by row combinations. As well, the pivot rows need to be zero, then we have m-r free variable rows. The reason for the name "left nullspace" is that RTy = 0 can be transposed to yTR = 0T.

The left nullspace of A has dimension m - r.

【读书笔记】:MIT线性代数(5):Four fundamental subspaces的更多相关文章

  1. 《3D Math Primer for Graphics and Game Development》读书笔记1

    <3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...

  2. 《Python神经网络编程》的读书笔记

    文章提纲 全书总评 读书笔记 C01.神经网络如何工作? C02.使用Python进行DIY C03.开拓思维 附录A.微积分简介 附录B.树莓派 全书总评 书本印刷质量:4星.纸张是米黄色,可以保护 ...

  3. linux内核分析 1、2章读书笔记

    一.linux历史 20世纪60年代,MIT开发分时操作系统(Compatible TIme-Sharing System),支持30台终端访问主机: 1965年,Bell实验室.MIT.GE(通用电 ...

  4. 【读书笔记】《Computer Organization and Design: The Hardware/Software Interface》(1)

    笔记前言: <Computer Organization and Design: The Hardware/Software Interface>,中文译名,<计算机组成与设计:硬件 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. JS跨域:jsonp、跨域资源共享、iframe+window.name

    JS跨域:jsonp.跨域资源共享.iframe+window.name :https://www.cnblogs.com/doudoublog/p/8652213.html JS中的跨域 请求跨域有 ...

  2. php上传文件如何保证上传文件不被改变或者乱码

    很多网站上传文件都截取文件后缀,前面用时间错加后缀组成,然而一下下载的网站并不需要这样,需要保持原来的文件名,这里讲述一下 //上传操作 function uploadify(){ //var_dum ...

  3. C# 使用Silverlight打印图片

    原文:https://www.cnblogs.com/jiajiayuan/archive/2012/04/13/2444246.html Silverlight中的打印只有一个类,那就是PrintD ...

  4. linux下创建svn仓库及用户

    1 Linux下创建svn仓库 1.1 启动SVN服务 svnserve -d -r  /SVNRootDirectry 其中SVNRootDirectry是你的SVN 根目录,例如192.85.1. ...

  5. 全文检索引擎sphinx 与 Elasticsearch 索引速度对比

    sphinx的特色之一是建立索引速度快,最近转投Elasticsearch后,一直想做个对比,网上资料常见说法是10倍的差距. 测试环境 硬件:单核,2G内存的E5-2630 虚拟机 操作系统:Cen ...

  6. query_module - 向内核查询和模块有关的各个位

    总览 #include <linux/module.h> int query_module(const char *name, int which,void *buf, size_t bu ...

  7. 初学Java 九九乘法表

    public class MultiplicationTable { public static void main(String[] args) { System.out.println(" ...

  8. mysql的锁

    前言 mysql锁的概念参考如下连接: 1.http://blog.csdn.net/u013063153/article/details/53432468 2.http://www.yesky.co ...

  9. MongoDB 导入导出以及数据库备份

    -------------------MongoDB数据导入与导出------------------- 1.导出工具:mongoexport    1.1.概念:         mongoDB中的 ...

  10. CreateJS入门 -- 注释详细到爆炸(My Style)

    写在前面 首先,还是谢谢大家的支持,谢谢!记得在之前的文章中我说过自己算是一个半文艺程序员,也一直想着写一写技术性和其他偏文学性的文章.虽然自己的底子没有多么优秀,但总是觉得这个过程中可以督促自己去思 ...