【读书笔记】:MIT线性代数(5):Four fundamental subspaces
At the beginning, the difference between rank and dimension: rank is a property for matrix, while dimension for subspaces. So we can obtain the rank of A, which reveals dimensions of four subspaces(2 from A, 2 from AT).
Important fact: The row space and column space have the same dimension r (the rank of the matrix). N(A) and N(AT) have dimensions n - rand m - r, to make up thefull nand m. C(A) and C(R) are different subspaces, because row operations reserve row spaces, but change column spaces.
Four subspaces:
Illustration:Notice the relationships between A and R:
1. The row space of R has dimension two, matching the rank. The first two row span the space, and the third row contributes nothing. The pivot rows are independent, so they are a basis for the row space.
A has the same row space as R. Same dimension r and same basis. Row operations don't change row space, because every row in of A is a combination of R.
2. The column space of R has dimension r=2. The number of independent rows is equal to the number of independent columns.The pivot columns are basis of C(R), and they span the column space.
C(A) has dimension r=2. However, C(A)≠C(R)! The same combinations of the columns are zero (or nonzero) for A and R. Say that another way: Ax = 0 exactly when Rx = 0.
3. The null space of R has the dimension n-r. Apart from pivot columns, there are n-r free variables,giving us n-r special solutions. The combination of them span the null space of R. And the special solutions are a basis of R. The fact is: To generate zero by column combinations, we must set pivot columns always equals zero, then combine free variable columns linearly to span the null space.
A has the same nullspace as R. Same dimension n - r and same basis. Reason: The elimination steps don't change the solutions.
4. The nul space of RT has dimension m-r, it is to generate zero by row combinations. As well, the pivot rows need to be zero, then we have m-r free variable rows. The reason for the name "left nullspace" is that RTy = 0 can be transposed to yTR = 0T.
The left nullspace of A has dimension m - r.
【读书笔记】:MIT线性代数(5):Four fundamental subspaces的更多相关文章
- 《3D Math Primer for Graphics and Game Development》读书笔记1
<3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...
- 《Python神经网络编程》的读书笔记
文章提纲 全书总评 读书笔记 C01.神经网络如何工作? C02.使用Python进行DIY C03.开拓思维 附录A.微积分简介 附录B.树莓派 全书总评 书本印刷质量:4星.纸张是米黄色,可以保护 ...
- linux内核分析 1、2章读书笔记
一.linux历史 20世纪60年代,MIT开发分时操作系统(Compatible TIme-Sharing System),支持30台终端访问主机: 1965年,Bell实验室.MIT.GE(通用电 ...
- 【读书笔记】《Computer Organization and Design: The Hardware/Software Interface》(1)
笔记前言: <Computer Organization and Design: The Hardware/Software Interface>,中文译名,<计算机组成与设计:硬件 ...
- 读书笔记汇总 - SQL必知必会(第4版)
本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...
- 读书笔记--SQL必知必会18--视图
读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...
- 《C#本质论》读书笔记(18)多线程处理
.NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...
- C#温故知新:《C#图解教程》读书笔记系列
一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...
- C#刨根究底:《你必须知道的.NET》读书笔记系列
一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...
随机推荐
- stl应用(map)或字典树(有点东西)
M - Violet Snow Gym - 101350M Every year, an elephant qualifies to the Arab Collegiate Programming C ...
- python学习三十四天函数高阶函数定义及用法
python函数高阶函数是把函数当成一个变量,传递给函数作为参数,或者函数的返回值里面有函数,都称为高阶函数, 1,把函数作为参数传递 def dac(x,y): return x+y def tes ...
- A AFei Loves Magic
链接:https://ac.nowcoder.com/acm/contest/338/A来源:牛客网 题目描述 AFei is a trainee magician who likes to stud ...
- 76.Longest Consecutive Sequence(最长的连续序列)
Level: Hard 题目描述: Given an unsorted array of integers, find the length of the longest consecutive ...
- python ORM的使用
安装 >pip install sqlalchemy #coding=utf-8 ''' 原始的sql语句 CREATE TABLE user ( id INTEGER NOT NULL AUT ...
- java Activiti6.0 后台 框架 spring5 SSM 工作流引擎 审批流程
1.模型管理 :web在线流程设计器.预览流程xml.导出xml.部署流程 2.流程管理 :导入导出流程资源文件.查看流程图.根据流程实例反射出流程模型.激活挂起 3.运行中流程:查看流程信息.当前任 ...
- http响应代码解释
200:成功响应 302:找到,但是请求的资源在另外一个不同的url中. 400:错误请求.这个请求不能被服务器所理解,客户端必须修改请求. 401:未认证,这个请求需要用户认证. 404:未找到.服 ...
- JS高级 — 函数中的this指向问题
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- 使用HystrixCommand封装http请求
1.引入依赖 要排除hystrix-core里的archaius-core,否则报错 <dependency> <groupId>com.netflix.hystrix< ...
- shell截取小数点前后的子串