参考博客:

用向量积求线段焦点证明:

首先,我们设 (AD向量 × AC向量) 为 multi(ADC) ; 那么 S三角形ADC = multi(ADC)/2 。

由三角形DPD1 与 三角形CPC1 相似;可得 |DP| / |PC| = |DD1| / |CC1| = multi(ADB) × multi(ACB) 。

|DP| / |PC| = (xD - xP) / (xP - xC) = (yD - yP) / (yP - yC) 。

xP = ((multi(D,B,A) * xC - multi(C,B,A) * xD)) / (multi(D,B,A) - multi(C,B,A));

yP = ((multi(D,B,A) * yC - multi(C,B,A) * yD)) / (multi(D,B,A) - multi(C,B,A));

题目不难,大致题意为:

给定一个单位矩阵,并在每条边上面“嵌入”n个点,这样每条边共有n+2个点。将单位矩阵对面相应位置的点连接起来,构成n*n个不规则四边形。要求出这n*n个矩阵中面积的最大值。

简单的模拟+叉积求三角形面积+不规则四边形划分成三角形求面积。

枚举每个四边形,将每个四边形划分为2个三角形。利用三角形求面积公式计算面积。比较求出最大面积。

那么关键点在于如何求三角形面积。

下面提供2中方法:

1)解析几何:

海伦公式: S=p*(p-a)*(p-b)*(p-c)取根号,其中p=(a+b+c)/2;

2)计算几何方法

S=1/2*| ac向量 叉乘 ab向量|

显然,计算几何方法更快,且精度更高(没有根号),代码也少,而且在求线段交点的过程中也会用到叉乘。一举两得

另外在模拟的过程中,要格外小心,因为很多细节要注意。
代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
#include<math.h>
using namespace std;
const int max_=;
typedef struct point{
double x;
double y;
}point;
point node[max_][max_];
double det(double x1,double y1,double x2,double y2)
{
return x1*y2-x2*y1;
}
double cross(point A,point B,point P)//AB,AP的叉乘
{
return det(B.x-A.x,B.y-A.y,P.x-A.x,P.y-A.y);
}
void intersection(point A,point B,point C,point D,int i,int j)//两线段的交点坐标
{
double nulti1=cross(A,B,C);
double nulti2=cross(A,B,D);
//printf("%lfok\n",nulti1);
node[i][j].x=(nulti2*C.x-nulti1*D.x)/(nulti2-nulti1);
node[i][j].y=(nulti2*C.y-nulti1*D.y)/(nulti2-nulti1);
}
int main()
{
int n;
while(scanf("%d",&n)&&n)
{
node[][].x=0.0,node[][].y=1.0;
node[][n+].x=1.0,node[][n+].y=1.0;
node[n+][].x=0.0,node[n+][].y=0.0;
node[n+][n+].x=1.0,node[n+][n+].y=0.0;
for(int i=;i<=n+;i++)
{
scanf("%lf",&node[n+][i].x);
node[n+][i].y=0.0;
}
for(int i=;i<=n+;i++)
{
scanf("%lf",&node[][i].x);
node[][i].y=1.0;
}
for(int i=n+;i>=;i--)
{
scanf("%lf",&node[i][].y);
node[i][].x=0.0;
}
for(int i=n+;i>=;i--)
{
scanf("%lf",&node[i][n+].y);
node[i][n+].x=1.0;
}
for(int i=;i<=n+;i++)
for(int j=;j<=n+;j++)
{
intersection(node[i][],node[i][n+],node[][j],node[n+][j],i,j);
}
double maxm=-1.0;
for(int i=;i<=n+;i++)
for(int j=;j<=n+;j++)//两三角形面积和
{
double temp=fabs(cross(node[i][j],node[i+][j],node[i][j+]))*0.5+
fabs(cross(node[i+][j+],node[i+][j],node[i][j+]))*0.5;
if(maxm<temp)
maxm=temp;
// printf("ok\n");
}
printf("%.6lf\n",maxm);
/* for(int i=2;i<=n+1;i++){
for(int j=2;j<=n+1;j++)
printf("%lf ",node[i][j].x);
printf("\n");
}*/
}
}

几何问题 poj 1408的更多相关文章

  1. POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

    题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. 简单几何(凸包) POJ 1696 Space Ant

    题目传送门 题意:一个蚂蚁一直往左边走,问最多能走多少步,且输出路径 分析:就是凸包的变形题,凸包性质,所有点都能走.从左下角开始走,不停排序.有点纠结,自己的凸包不能AC.待理解透凸包再来写.. 好 ...

  3. 简单几何(凸包) POJ 1113 Wall

    题目传送门 题意:求最短路线,使得线上任意一点离城堡至少L距离 分析:先求凸包,答案 = 凸包的长度 + 以L为半径的圆的周长 /*********************************** ...

  4. 简单几何(凸包) POJ 2187 Beauty Contest

    题目传送门 题意:求两点的距离平方的最大值 分析:凸包模板题 /************************************************ * Author :Running_T ...

  5. Fishnet(暴力POJ 1408)

    Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1911   Accepted: 1227 Descripti ...

  6. 两条线段求交点+叉积求面积 poj 1408

    题目链接:https://vjudge.net/problem/POJ-1408 题目是叫我们求出所有四边形里最大的那个的面积. 思路:因为这里只给了我们正方形四条边上的点,所以我们要先计算横竖线段两 ...

  7. POJ 1408:Fishnet

    Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1921   Accepted: 1234 Descripti ...

  8. poj很好很有层次感(转)

    OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 30 ...

  9. POJ题目分类推荐 (很好很有层次感)

    著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299 ...

随机推荐

  1. ldap认证服务的搭建

    1. Ldap服务介绍 LDAP 全称轻量级目录访问协议(英文:Lightweight Directory Access Protocol),是一个运行在 TCP/IP 上的目录访问协议.目录是一个特 ...

  2. 10.Jmeter 快速入门教程 -- 用Jmeter测试你的EJB

    有时候,需要对EJB进行性能基准测试,这对开发非常有帮助. 有很多种方法可以这么做, 当然我们这里介绍Apache's Jmeter 来进行实验测试. 非常不幸的是, Jmeter没有提供一个现成的测 ...

  3. Cocos2d-x之Node

    |   版权声明:本文为博主原创文章,未经博主允许不得转载. 节点是cocosd-x游戏引擎中的重要元素,是其他重要游戏元素的基类,例如,场景Scene,图层Layer,菜单Menu和精灵sprite ...

  4. 字母所对应的Unicode编码

    A~Z                65~90 a~z                 97~122 public class Unicode { public static void main(S ...

  5. 跨域篇--JSONP原理

    一篇文章让你明白 jsonp原理详解 什么是JSONP? 先说说JSONP是怎么产生的: 其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,着用自 ...

  6. 制作 macOS High Sierra U盘

    制作 macOS High Sierra U盘USB启动安装盘方法教程 (全新安装 Mac 系统) 随着苹果 macOS High Sierra 正式版发布,很多使用 Mac 电脑的同学都已升级到最新 ...

  7. typescript 类型映射 (ReadOnly、Partial)

    有时候需要一个类型,是依赖于上一个类型但是,对属性的要求去不同 interface Person{ name: string; agent: number; } type Person2 = Read ...

  8. LinkButton(按钮)组件

    一.//class加载方式 <div id="pos" class="easyui-linkbutton">按钮</div> 二.js加 ...

  9. 三重循环之break

    while(1) { while(1) { while(1) { break; } } } //逻辑堪比绝技啊 脑洞开之注册表循环遍历方法

  10. redis搭建主从

    主从概念 ⼀个master可以拥有多个slave,⼀个slave⼜可以拥有多个slave,如此下去,形成了强⼤的多级服务器集群架构 master用来写数据,slave用来读数据,经统计:网站的读写比率 ...