Spark译文(二)
PySpark Usage Guide for Pandas with Apache Arrow(使用Apache Arrow的Pandas PySpark使用指南)
- Apache Arrow in Spark
- Enabling for Conversion to/from Pandas
- Pandas UDFs (a.k.a. Vectorized UDFs)
- Usage Notes
Apache Arrow in Spark(Spark中的Apache Arrow)
Ensure PyArrow Installed(确保PyArrow已安装)
Enabling for Conversion to/from Pandas(启用与Pandas的转换)
import numpy as np
import pandas as pd # Enable Arrow-based columnar data transfers
spark.conf.set("spark.sql.execution.arrow.enabled", "true") # Generate a Pandas DataFrame
pdf = pd.DataFrame(np.random.rand(100, 3)) # Create a Spark DataFrame from a Pandas DataFrame using Arrow
df = spark.createDataFrame(pdf) # Convert the Spark DataFrame back to a Pandas DataFrame using Arrow
result_pdf = df.select("*").toPandas()
Pandas UDFs (a.k.a. Vectorized UDFs)
Scalar
import pandas as pd from pyspark.sql.functions import col, pandas_udf
from pyspark.sql.types import LongType # Declare the function and create the UDF
def multiply_func(a, b):
return a * b multiply = pandas_udf(multiply_func, returnType=LongType()) # The function for a pandas_udf should be able to execute with local Pandas data
x = pd.Series([1, 2, 3])
print(multiply_func(x, x))
# 0 1
# 1 4
# 2 9
# dtype: int64 # Create a Spark DataFrame, 'spark' is an existing SparkSession
df = spark.createDataFrame(pd.DataFrame(x, columns=["x"])) # Execute function as a Spark vectorized UDF
df.select(multiply(col("x"), col("x"))).show()
# +-------------------+
# |multiply_func(x, x)|
# +-------------------+
# | 1|
# | 4|
# | 9|
# +-------------------+
Grouped Map(分组图)
from pyspark.sql.functions import pandas_udf, PandasUDFType df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v")) @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP)
def subtract_mean(pdf):
# pdf is a pandas.DataFrame
v = pdf.v
return pdf.assign(v=v - v.mean()) df.groupby("id").apply(subtract_mean).show()
# +---+----+
# | id| v|
# +---+----+
# | 1|-0.5|
# | 1| 0.5|
# | 2|-3.0|
# | 2|-1.0|
# | 2| 4.0|
# +---+----+
Grouped Aggregate(分组聚合)
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql import Window df = spark.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
("id", "v")) @pandas_udf("double", PandasUDFType.GROUPED_AGG)
def mean_udf(v):
return v.mean() df.groupby("id").agg(mean_udf(df['v'])).show()
# +---+-----------+
# | id|mean_udf(v)|
# +---+-----------+
# | 1| 1.5|
# | 2| 6.0|
# +---+-----------+ w = Window \
.partitionBy('id') \
.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
df.withColumn('mean_v', mean_udf(df['v']).over(w)).show()
# +---+----+------+
# | id| v|mean_v|
# +---+----+------+
# | 1| 1.0| 1.5|
# | 1| 2.0| 1.5|
# | 2| 3.0| 6.0|
# | 2| 5.0| 6.0|
# | 2|10.0| 6.0|
# +---+----+------+
Usage Notes(使用说明)
Supported SQL Types(支持的SQL类型)
Setting Arrow Batch Size(设置箭头批量大小)
Timestamp with Time Zone Semantics
Spark译文(二)的更多相关文章
- Spark(二)算子详解
目录 Spark(二)算子讲解 一.wordcountcount 二.编程模型 三.RDD数据集和算子的使用 Spark(二)算子讲解 @ 一.wordcountcount 基于上次的wordcoun ...
- 分别使用Hadoop和Spark实现二次排序
零.序(注意本部分与标题无太大关系,可直接调至第一部分) 既然没用为啥会有序?原因不想再开一篇文章,来抒发点什么感想或者计划了,就在这里写点好了: 前些日子买了几本书,打算学习和研究大数据方面的知识, ...
- spark的二次排序
通过scala实现二次排序 package _core.SortAndTopN import org.apache.spark.{SparkConf, SparkContext} /** * Auth ...
- 大数据入门第二十二天——spark(二)RDD算子(2)与spark其它特性
一.JdbcRDD与关系型数据库交互 虽然略显鸡肋,但这里还是记录一下(点开JdbcRDD可以看到限制比较死,基本是鸡肋.但好在我们可以通过自定义的JdbcRDD来帮助我们完成与关系型数据库的交互.这 ...
- 大数据入门第二十二天——spark(二)RDD算子(1)
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的 ...
- Spark(二)CentOS7.5搭建Spark2.3.1分布式集群
一 下载安装包 1 官方下载 官方下载地址:http://spark.apache.org/downloads.html 2 安装前提 Java8 安装成功 zookeeper 安 ...
- spark streaming (二)
一.基础核心概念 1.StreamingContext详解 (一) 有两种创建StreamingContext的方式: val conf = new SparkConf().s ...
- Spark Standalone Mode 多机启动 -- 分布式计算系统spark学习(二)(更新一键启动slavers)
捣鼓了一下,先来个手动挡吧.自动挡要设置ssh无密码登陆啥的,后面开搞. 一.手动多台机链接master 手动链接master其实上篇已经用过. 这里有两台机器: 10.60.215.41 启动mas ...
- Spark(二) -- Spark简单介绍
spark是什么? spark开源的类Hadoop MapReduce的通用的并行计算框架 spark基于map reduce算法实现的分布式计算 拥有Hadoop MapReduce所具有的优点 但 ...
随机推荐
- typescript中新增的基本数据类型
javascript中有7种数据类型,分别是:boolean,number,string,null,undefined和object,以及在es6中新增的一种类型 symbol.而typescript ...
- c++ 【递归算法】梵塔问题
一道递归水题,2话不说,直接放代码: #include<iostream> using namespace std; int k; void move(int m,char a,char ...
- 从入门到自闭之Python列表,元祖及range
1.列表 数据类型之一,存储数据,大量的,存储不同类型的数据 列表是一种有序的容器 支持索引 列表是一种可变数据类型 原地修改 列表中只要用逗号隔开的就是一个元素,字符串中只要是占一个位置的就是一个元 ...
- Codeforces 1221C. Perfect Team
传送门 考虑如何保证限制,首先团队数最大就是 $min(c,m)$ 但是还不够,每个团队还要 $3$ 个人,所以还要和 $(c+m+x)/3$ 再取 $min$ 这样就满足所有限制了 #include ...
- [Next] 服务端渲染知识补充
渲染 渲染:就是将数据和模版组装成 html 客户端渲染 客户端渲染模式下,服务端把渲染的静态文件给到客户端,客户端拿到服务端发送过来的文件自己跑一遍 js,根据 JS 运行结果,生成相应 DOM,然 ...
- Mysql学习(一)之简单介绍
数据库简介 数据库分类 关系型数据库:MySQL.Oracle.SQLServer.Access.db2.fox pro 文件型数据库:sqlite.mongodb 空间型数据库: 数据库分为两端 数 ...
- jQuery选择器引入
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- 爬取YY评级信息
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : 爬取YY评级基本信息.py # @Author: lattesea # @Date : ...
- MySQL主从延时这么长,要怎么优化?
MySQL主从复制,读写分离是互联网常见的数据库架构,该架构最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重. 为什么主从延时这么大? 答:MySQL使用单线程重放RelayL ...
- |、&、||、&&、^符号含义
|和&为计算机中二进制之间的位运算 在计算机中二进制的0表示false,1表示true. |为位运算中的或运算:它的运算逻辑为一真则真,全假则假 &为位运算中的并运算:它的运算逻辑为一 ...