1. 为网络的不同部分指定不同的学习率

 class LeNet(t.nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.features = t.nn.Sequential(
t.nn.Conv2d(3, 6, 5),
t.nn.ReLU(),
t.nn.MaxPool2d(2, 2),
t.nn.Conv2d(6, 16, 5),
t.nn.ReLU(),
t.nn.MaxPool2d(2, 2)
)
# 由于调整shape并不是一个class层,
# 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
self.classifier = t.nn.Sequential(
t.nn.Linear(16*5*5, 120),
t.nn.ReLU(),
t.nn.Linear(120, 84),
t.nn.ReLU(),
t.nn.Linear(84, 10)
) def forward(self, x):
x = self.features(x)
x = x.view(-1, 16*5*5)
x = self.classifier(x)
return x

这里LeNet被拆解成features和classifier两个模型来实现。在训练时,可以为features和classifier分别指定不同的学习率。

 model = LeNet()
optimizer = optim.SGD([{'params': model.features.parameters()},
{'params': model.classifier.parameters(), 'lr': 1e-2}
], lr = 1e-5)

对于{'params': model.classifier.parameters(), 'lr': 1e-2} 被指定了特殊的学习率 'lr': 1e-2,则按照该值优化。

对于{'params': model.features.parameters()} 没有特殊指定学习率,则使用 lr = 1e-5。

SGD的param_groups中保存着 'params', 'lr', 'momentum', 'dampening','weight_decay','nesterov'及对应值的字典。


在 CLASS torch.optim.Optimizer(params, defaults) 中,提供了 add_param_group(param_group) 函数,可以在optimizer中添加param group. 这在固定与训练网络模型部分,fine-tuning 训练层部分时很实用。

2. 动态调整网络模块的学习率

 for p in optimizer.param_groups:
p['lr'] = rate()

如果需要动态设置学习率,可以以这种方式,将关于学习率的函数赋值给参数的['lr']属性。

还以以上定义的LeNet的optimizer为例,根据上面的定义,有两个param_groups, 一个是model.features.parameters(), 一个是{'params': model.classifier.parameters()。

那么在for的迭代中,可以分别为这两个param_group通过函数rate()实现动态赋予学习率的功能。


如果将optimizer定义为:

optimizer = optim.SGD(model.parameters(), lr = 0.001, momentum = 0.9)

那么param_groups中只有一个param group,也就是网络中各个模块共用同一个学习率。

3. 使用pytorch封装好的方法

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

torch.optim.lr_scheduler中提供了一些给予epochs的动态调整学习率的方法。

https://www.jianshu.com/p/a20d5a7ed6f3 这篇blog中绘制了一些学习率方法对应的图示。

1)torch.optim.lr_scheduler.StepLR

 import torch
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision.models import AlexNet
import matplotlib.pyplot as plt model = AlexNet(num_classes=2)
optimizer = optim.SGD(params=model.parameters(), lr=0.05) # lr_scheduler.StepLR()
# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05 if epoch < 30
# lr = 0.005 if 30 <= epoch < 60
# lr = 0.0005 if 60 <= epoch < 90 scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
plt.figure()
x = list(range(100))
y = []
for epoch in range(100):
scheduler.step()
lr = scheduler.get_lr()
print(epoch, scheduler.get_lr()[0])
y.append(scheduler.get_lr()[0]) plt.plot(x, y)

2)torch.optim.lr_scheduler.MultiStepLR

与StepLR相比,MultiStepLR可以设置指定的区间

 # ---------------------------------------------------------------
# 可以指定区间
# lr_scheduler.MultiStepLR()
# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05 if epoch < 30
# lr = 0.005 if 30 <= epoch < 80
# lr = 0.0005 if epoch >= 80
print()
plt.figure()
y.clear()
scheduler = lr_scheduler.MultiStepLR(optimizer, [30, 80], 0.1)
for epoch in range(100):
scheduler.step()
print(epoch, 'lr={:.6f}'.format(scheduler.get_lr()[0]))
y.append(scheduler.get_lr()[0]) plt.plot(x, y)
plt.show()

3)torch.optim.lr_scheduler.ExponentialLR

指数衰减

 scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
print()
plt.figure()
y.clear()
for epoch in range(100):
scheduler.step()
print(epoch, 'lr={:.6f}'.format(scheduler.get_lr()[0]))
y.append(scheduler.get_lr()[0]) plt.plot(x, y)
plt.show()

[pytorch笔记] 调整网络学习率的更多相关文章

  1. [Pytorch] pytorch笔记 <三>

    pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...

  2. [Pytorch] pytorch笔记 <一>

    pytorch笔记 - torchvision.utils.make_grid torchvision.utils.make_grid torchvision.utils.make_grid(tens ...

  3. python3.4学习笔记(十七) 网络爬虫使用Beautifulsoup4抓取内容

    python3.4学习笔记(十七) 网络爬虫使用Beautifulsoup4抓取内容 Beautiful Soup 是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖 ...

  4. python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息,抓取政府网新闻内容

    python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI,采用Python语言编写 ...

  5. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  6. [Pytorch] pytorch笔记 <二>

    pytorch笔记2 用到的关于plt的总结 plt.scatter scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, ...

  7. 使用Iperf调整网络

    使用Iperf调整网络     Iperf 是一个 TCP/IP 和 UDP/IP 的性能测量工具,通过调谐各种参数可以测试TCP的最大带宽,并报告带宽.延迟,最大段和最大传输单元大小等统计信息.Ip ...

  8. PyTorch对ResNet网络的实现解析

    PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # ...

  9. pytorch空间变换网络

    pytorch空间变换网络 本文将学习如何使用称为空间变换器网络的视觉注意机制来扩充网络.可以在DeepMind paper 阅读更多有关空间变换器网络的内容. 空间变换器网络是对任何空间变换的差异化 ...

随机推荐

  1. HDU3336 Count the string(kmp

    It is well known that AekdyCoin is good at string problems as well as number theory problems. When g ...

  2. 2019CCPC-江西省赛 -A Cotree (树形DP,求树上一点到其他点的距离之和)

    我是傻逼我是傻逼 #include<bits/stdc++.h> using namespace std; const int maxn=4e5+50; typedef long long ...

  3. jQuery 实现图片放大两种方式

    jQuery 实现图片放大两种方式 一.利用css样式表实现,多用于后台显示 1.这种比较简单,利用dom元素的hover实现样式切换 <style> img{ cursor: point ...

  4. jQuery Mobile Slider Widget 使用js控制

    jQuery Mobile 滑动条控件 基本用法不用多说了,看这里: http://www.runoob.com/jquerymobile/jquerymobile-form-sliders.html ...

  5. python基础之函数当中的装饰器

    在实际工作当中存在一个开放封闭原则 1.对扩展是开放的 为什么要对扩展开放呢? 我们说,任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改.所以我们必须允许代码扩展.添加新 ...

  6. centos查看实时网络带宽占用情况方法【转】

    Linux中查看网卡流量工具有iptraf.iftop以及nethogs等,iftop可以用来监控网卡的实时流量(可以指定网段).反向解析IP.显示端口信息等. centos安装iftop的命令如下: ...

  7. wex5 baasData规则和绑定 学习

    1 在baasData新建一个计算列 2 点击编辑规则,左边选择该计算列, 右边点击计算后面的设置 3 写规则的逻辑 好像不能用if 只能用三目运算符 4 绑定样式和文本的时候 这么用:

  8. JS常见面试题总结-真实被问到的!

    1.判断数据类型有几种方法 console.log(typeof 'abc') // string console.log(Object.prototype.toString.call('abc')) ...

  9. performance面板使用,以及解决动画卡顿

    https://googlechrome.github.io/devtools-samples/jank//    官方案例 https://juejin.im/post/5b65105f518825 ...

  10. TP-Link 路由器 如何在现有的环境中改善无线信号传输质量

    http://service.tp-link.com.cn/detail_article_346.html