Who's Aunt Zhang

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 125    Accepted Submission(s): 108

Problem Description
Aunt Zhang, well known as 张阿姨, is a fan of Rubik’s cube. One day she buys a new one and would like to color it as a gift to send to Teacher Liu, well known as 刘老师. As Aunt Zhang is so ingenuity, she can color all the cube’s points, edges and faces with K different color. Now Aunt Zhang wants to know how many different cubes she can get. Two cubes are considered as the same if and only if one can change to another ONLY by rotating the WHOLE cube. Note that every face of Rubik’s cube is consists of nine small faces. Aunt Zhang can color arbitrary color as she like which means that she doesn’t need to color the nine small faces with same color in a big face. You can assume that Aunt Zhang has 74 different elements to color. (8 points + 12 edges + 9*6=54 small faces)
 
Input
The first line of the date is an integer T, which is the number of the text cases. Then T cases follow, each case contains one integer K, which is the number of colors. T<=100, K<=100.
 
Output
For each case, you should output the number of different cubes. Give your answer modulo 10007.
 
Sample Input
3 1 2 3
 
Sample Output
Case 1: 1 Case 2: 1330 Case 3: 9505
 
Source
 
Recommend
zhuyuanchen520
 
 
/*
本体明显的polya的应用.     G为置换群总数,c(gi)为群gi的循环节。。
  
步骤:               

先求置换种类,接着再手动画图算出循环节!!!

本题模型共有4大类置换,共24种:

1. 不做任何旋转 K ^ (54 + 12 + 8)

2. 绕相对面中心的轴转

1) 90度 K ^ (15 + 3 + 2) * 3

1) 180度 K ^ (28 + 6 + 4) * 3

1) 270度 K ^ (15 + 3 + 2) * 3

3. 绕相对棱中心的轴转

1) 180度 K ^ (27 + 7 + 4) * 6

4. 绕相对顶点的轴转

1) 120度 K ^ (18 + 4 + 4) * 4

1) 240度 K ^ (18 + 4 + 4) * 4

 #include <iostream>
#include<stdio.h>
#include<string.h>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const int mo=; int q(int a,int b)
{
int ans=;
a%=mo;
while(b)
{
if(b&)
{
ans=ans*a%mo;
b--;
}
b>>=;
a=a*a%mo;
}
return ans;
} int main()
{
int ca,i,j,T,k;
scanf("%d",&T);
for(ca=;ca<=T;ca++)
{
scanf("%d",&k);
int ans=;
ans+=q(k,);//不转 ans+=q(k,)*+q(k,)*;//面面90与270度;
ans+=q(k,)*;//面面180度; ans+=q(k,)*;//対棱180; ans+=q(k,)*+ q(k,)*;//对顶; ans%=mo;
ans*=q(,mo-);
ans%=mo; printf("Case %d: ",ca);
printf("%d\n",ans); } }

hdu 4633 Who's Aunt Zhang(polya+逆元)的更多相关文章

  1. HDU 4633 Who's Aunt Zhang ★(Polya定理 + 除法取模)

    题意 用K个颜色给魔方染色,魔方只能整体旋转并且旋转重合的方案算一种,求一共有多少不同的染色方案. 思路 经典的Polya应用,记住正六面体的置换群就可以了,魔方就是每个大面变成9个小面了而已: 本题 ...

  2. HDU 4633 Who's Aunt Zhang (2013多校4 1002 polya计数)

    Who's Aunt Zhang Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个 ...

  4. HDU 4633 Who's Aunt Zhang(polay计数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4633 题意:有下面一个魔方.有K种颜色.可以为顶点.边.面(每个面有9个小面)染色.两种染色算作一种当 ...

  5. hdu 5868:Different Circle Permutation 【Polya计数】

    似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...

  6. HDU 5145 NPY and girls 莫队+逆元

    NPY and girls Problem Description NPY's girlfriend blew him out!His honey doesn't love him any more! ...

  7. 2013 Multi-University Training Contest 4 Who's Aunt Zhang

    看题就知道要用polya,但是当时没做出来,还是不是很熟悉polya!!! 总共有24种置换: 1. 不做任何旋转 K ^ (54 + 12 + 8) 2. 绕相对面中心的轴转 1) 90度 K ^ ...

  8. HDU 4828 Grids(卡特兰数+乘法逆元)

    首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数.而这里正好就对应了这种情况.我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在 ...

  9. hdu 5407【LCM性质】+【逆元】(结论题)

    <题目链接> <转载于 >>> > Problem Description CRB has N different candies. He is going ...

随机推荐

  1. Make jQuery throw error when it doesn't match an element

    Make jQuery throw error when it doesn't match an element 解答1 You could make a plugin to use to ensur ...

  2. jquery.fileupload-image-editor.js

    jquery.fileupload-image-editor.js中 _initEventHandlers: function () { this._super(); var handlers = { ...

  3. Elasticsearch Java Rest Client API 整理总结 (一)

    http://www.likecs.com/default/index/show?id=39549

  4. leetcode-mid-sorting and searching - 56 Merge Intervals

    mycode 出现的问题:比如最后一个元素是[1,10],1小于前面所有元素的最小值,10大于前面所有元素的最大值,而我最开始的思路只考虑了相邻 参考: 思路:如果我只考虑相邻,必须先将list排序, ...

  5. linux(centOS7)的基本操作(一) 概述

    linux服务器的连接 1.连接 window环境下需要安装XShell.XFtp等软件,暂时不表: macOS环境下直接用ssh命令登录即可,用以下任意一种 ssh [-p port] userna ...

  6. CentOS 6、CentOS7 防火墙开放指定端口

    当我们在CentOS服务器中装了一些开发环境(如 tomcat.mysql.nginx 等...)时,希望能从外界访问,就需要配置防火墙对指定端口开放. CentOS 6.51.开放指定端口/sbin ...

  7. 手动搭建redis cluster

    集群中至少应该有奇数个节点,所以至少有三个节点,每个节点至少有一个备份节点,所以下面使用6节点(主节点.备份节点由redis-cluster集群确定) 1.安装redis节点指定端口解压redis压缩 ...

  8. Microsoft.Office.Interop.Excel Find 操作

    public void SearchLoactions(string filepath, int start, int end ,string expectvalue) { if (end >= ...

  9. 举例讲解Python中的死锁、可重入锁和互斥锁

    举例讲解Python中的死锁.可重入锁和互斥锁 一.死锁 简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况. 1.迭代死锁 该情况是一 ...

  10. 【ABAP系列】SAP ABAP smartforms设备类型CNSAPWIN不支持页格式ZXXX

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP smartfo ...