二叉搜索树倒序O(nlogn)建树
由于在某些糟糕情况下,二叉查找树会退化成链,故而朴素建树过程其复杂度可能会退化成\(O(n^2)\)。
采用倒序连边建树的方法可以使得二叉查找树建树复杂度稳定在\(O(nlogn)\).
具体思路如下:
把待建树的序列\(a_1,a_2,a_3,a_4..a_n\)\(排序,对于每一个\)\(a_i\)求得其在排序后的序列中的前驱pre和后继suc.
倒序遍历序列\(a_n\),对于\(a_i\),其一定是其前驱与后继之中的某个的儿子,如果前驱在序列\(a_n\)比后继靠后(出现的晚),那么ai是前驱的儿子,反之是后继的儿子。//仔细想想,为什么?
更新对应的前驱或后继,并且删除掉\(a_i\)
对于第二点,可以理解为建树的过程是把区间不断更新成左右子树的过程。那么对于某一个插入,假设点插入了
区间[pre+1,suc-1],那么[pre+1,point-1]为左子树,[point+1,suc-1]为右子树。也就是说区间是谁的子树,要看区间端点谁最后出现。
所以一个二叉查找树一个很重要的性质是:对于每一次插入的结点,其要么是最小的比它大的结点的儿子,要么是最大的比它小的结点的儿子。
根据这个性质,可以通过树状数组同样完成\(O(nlog^2n)\)建树。
我们已经知道对于每次插入,我们只需要知道所要插入的点要落在哪个区间,即落在哪两个点之间。
所以通过树状数组维护前缀和(目的是求插入的点是当前第几大),假设当前的点是第k大,二分查询树状数组
分别查询出第k-1大对应的位置和第k+1大对应的位置,然后比较这两个位置谁晚出现,即可。
二叉搜索树倒序O(nlogn)建树的更多相关文章
- 天梯赛练习 L3-010 是否完全二叉搜索树 (30分) 数组建树模拟
题目分析: 本题的要求是将n个数依次插入一个空的二叉搜索树(左大右小,且没有重复数字),最后需要输出其层次遍历以及判断是否是完全二叉搜索树,通过观察我们发现, 如果这个树是用数组建立的,那么最后输出的 ...
- L2-004 这是二叉搜索树吗? (25 分) (树)
链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805070971912192 题目: 一棵二叉搜索树可被递归地定义为 ...
- PAT 天梯赛 L3-010. 是否完全二叉搜索树 【Tree】
题目链接 https://www.patest.cn/contests/gplt/L3-010 思路 因为是 完全二叉搜索树 可以用 数据 建树的方式 然后 遍历一遍这个 数字 就是 层序遍历 遍历的 ...
- PTA 7-1 是否完全二叉搜索树 (30分)
PTA 7-1 是否完全二叉搜索树 (30分) 将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果. ...
- Luogu P1377 [TJOI2011]树的序:离线nlogn建二叉搜索树
题目链接:https://www.luogu.org/problemnew/show/P1377 题意: 有一棵n个节点的二叉搜索树. 给出它的插入序列,是一个1到n的排列. 问你使得树的形态相同的字 ...
- PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...
- [LC] 108题 将有序数组转换为二叉搜索树 (建树)
①题目 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,- ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- [LeetCode] Binary Search Tree Iterator 二叉搜索树迭代器
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
随机推荐
- bash配置相关
登录方式 登录方式分为两种方式:
- CodeForces - 1175E Minimal Segment Cover (倍增优化dp)
题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点. 如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端 ...
- BZOJ1257 [CQOI2007]余数之和[规律]
被zcr和yy轮流嘲讽了一番,感觉自己智商日渐下降...\TヘTツ 先拆mod变成整数除法,然后就是$nk- \Sigma_{i=1}^{n} i * \lfloor \frac{k}{i} \rfl ...
- 发送动态IP到邮件
# -*-coding:utf8 -*- #!/usr/bin/python import smtplib from email.mime.text import MIMEText # IP impo ...
- h5css3_01
一.什么是 HTML5 HTML5 的概念与定义 定义:HTML5 定义了 HTML 标准的最新版本,是对 HTML 的第五次重大修改,号称下一代的 HTML 两个概念: 是一个新版本的 HTML 语 ...
- 在CentOS/Windows下配置Nginx(以及踩坑)
在CentOS/Windows下配置Nginx(以及踩坑) 1. 序言 因为这类文章网上比较多,实际操作起来也大同小异,所以我并不会着重于详细配置方面,而是将我配置时踩的坑写出来. 2. CentOS ...
- Windows环境下MySQL面试技巧
对话一: 面试官:重新安装mysql卡在最后一步,怎么解决? 应聘者:第一次安装完mysql,由于各种原因需要重新安装是经常遇到的问题,解决方案如下. 1)在注册表里搜索my ...
- KMP模版 && KMP求子串在主串出现的次数模版
求取出现的次数 : #include<bits/stdc++.h> ; char mo[maxn], str[maxn];///mo为模式串.str为主串 int next[maxn]; ...
- Is JavaScript a pass-by-reference or pass-by-value language?
Is JavaScript a pass-by-reference or pass-by-value language? A very detailed explanation about copyi ...
- spark 笔记 8: Stage
Stage 是一组独立的任务,他们在一个job中执行相同的功能(function),功能的划分是以shuffle为边界的.DAG调度器以拓扑顺序执行同一个Stage中的task. /** * A st ...