当某个task完成后,某个shuffle Stage X可能已完成,那么就可能会一些仅依赖Stage X的Stage现在可以执行了,所以要有响应task完成的状态更新流程。


=======================DAG task完成后的更新流程===================
->CoarseGrainedSchedulerBackend::receiveWithLogging  --调度器的事件接收器
->case StatusUpdate(executorId, taskId, state, data) --状态更新事件(来源于CoarseGrainedExecutorBackend)
->scheduler.statusUpdate(taskId, state, data.value) --状态更新
->taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData) --将成功的时间封装到一个executor排队执行
->getTaskResultExecutor.execute(new Runnable {override def run(): Unit = Utils.logUncaughtExceptions {
->val result = serializer.get().deserialize[TaskResult[_]](serializedData) match { --反序列化结果
->scheduler.handleSuccessfulTask(taskSetManager, tid, result) --处理成功的task
->taskSetManager.handleSuccessfulTask(tid, taskResult) 
-> sched.dagScheduler.taskEnded(tasks(index) ... result.metrics)  --另起一段
->maybeFinishTaskSet()  --判断是否taskSet结束了,更新状态。注意:在DAG里,调度的粒度是taskSet。
->sched.taskSetFinished(this)  --如果taskSet结束了,更新DAG的这个调度单元
->activeTaskSets -= manager.taskSet.id  --从active taskSet中删除tid
->manager.parent.removeSchedulable(manager) 
->schedulableQueue.remove(schedulable)  --从调度队列中删除tid
->schedulableNameToSchedulable.remove(schedulable.name)  --删除调度单元。
->makeOffers(executorId) --将这个executorId分配给其他task使用
  
->DAGScheduler::taskEnded  --任务结束事件处理流程
->eventProcessActor ! CompletionEvent(task, reason, result, accumUpdates, taskInfo, taskMetrics)
->def receive 
->case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) 
->dagScheduler.handleTaskCompletion(completion)  --Responds to a task finishing. 
//This is called inside the event loop so it assumes that it can modify the scheduler's internal state
->event.reason match => case Success =>  --task结果是成功的
->if (event.accumUpdates != null)   --如果是状态更新
->event.accumUpdates.foreach { case (id, partialValue)  --更新状态
->listenerBus.post(SparkListenerTaskEnd(...)) --通知listener任务结束
->stage.pendingTasks -= task  
->task match {
->case rt: ResultTask[_, _] =>  --如果是ResultTask
->if (job.numFinished == job.numPartitions)  --如果所有的分片数据都完成
->markStageAsFinished(stage) --那么这个Stage就是结束了
->runningStages -= stage --从running状态中删除
->listenerBus.post(SparkListenerStageCompleted(stage.latestInfo)) --通知Stage结束
->cleanupStateForJobAndIndependentStages(job) --清除依赖关系
->val registeredStages = jobIdToStageIds.get(job.jobId) --找到这个job对应的所有Stage(job对应多个stage)
->stageIdToStage.filterKeys(stageId => registeredStages.get.contains(stageId)).foreach 
//查找所有stage,找出注册了依赖于这个job所在stage的。
->case (stageId, stage) =>
->val jobSet = stage.jobIds  
->if (!jobSet.contains(job.jobId)) --这些存在依赖的stage中,应该包含这个job的注册
->logError("Job %d not registered for stage %d even though that stage was registered for the job"
  .format(job.jobId, stageId))
->if (jobSet.isEmpty)  // no other job needs this stage 没有其他job了,这个依赖的stage也结束了。
-> removeStage(stageId) --删除stage
->listenerBus.post(SparkListenerJobEnd(job.jobId, JobSucceeded)) --通知job结束
->job.listener.taskSucceeded(rt.outputId, event.result) --通知task成功
->case smt: ShuffleMapTask =>  --如果是shuffleMapTask
->if (runningStages.contains(stage) && stage.pendingTasks.isEmpty) --如果stage的所有task都完成
->markStageAsFinished(stage) --标志stage完成
->listenerBus.post(SparkListenerStageCompleted(stage.latestInfo)) --通知stage完成
->logInfo("looking for newly runnable stages") --stage完成了,意味着依赖这个stage的stage可以执行了
->mapOutputTracker.registerMapOutputs --(?用处不明)
->clearCacheLocs()
->if (stage.outputLocs.exists(_ == Nil)) // Some tasks had failed; let's resubmit this stage
->submitStage(stage)
->else
->val newlyRunnable = new ArrayBuffer[Stage]
-> for (stage <- waitingStages if getMissingParentStages(stage) == Nil) 如果一个stage没有依赖其他stage
->newlyRunnable += stage --这个没有依赖的stage就可以执行了
->waitingStages --= newlyRunnable
->runningStages ++= newlyRunnable
->for {stage <- newlyRunnable.sortBy(_.id); jobId <- activeJobForStage(stage)}
->submitMissingTasks(stage, jobId) --将这些没有依赖的stage的所有active job提交执行
->submitWaitingStages() --//Check for waiting or failed stages which are now eligible for resubmission.
//Ordinarily run on every iteration of the event loop. 每个事件处理都会触发去检查waiting状态的stage是否能够执行了。
->logTrace("Checking for newly runnable parent stages")
->waitingStages.clear()
    ->for (stage <- waitingStagesCopy.sortBy(_.jobId)) 
          ->submitStage(stage)

========================end================================

spark 笔记 13: 再看DAGScheduler,stage状态更新流程的更多相关文章

  1. 线性代数笔记13——Ax=b的通解

    关于最简行阶梯矩阵和矩阵秩,可参考<线性代数笔记7——再看行列式与矩阵> 召唤一个方程Ax = b: 3个方程4个变量,方程组有无数解,现在要关注的是b1b2b3之间满足什么条件时方程组有 ...

  2. spark 笔记 15: ShuffleManager,shuffle map两端的stage/task的桥梁

    无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的 ...

  3. Android菜鸟的成长笔记(17)—— 再看Android中的Unbounded Service

    原文:Android菜鸟的成长笔记(17)-- 再看Android中的Unbounded Service 前面已经写过关于startService(Unbounded Service)的一篇文章:&l ...

  4. Spark源码分析之三:Stage划分

    继上篇<Spark源码分析之Job的调度模型与运行反馈>之后,我们继续来看第二阶段--Stage划分. Stage划分的大体流程如下图所示: 前面提到,对于JobSubmitted事件,我 ...

  5. spark作业运行过程之--DAGScheduler

    DAGScheduler--stage划分和创建以及stage的提交 本篇,我会从一次spark作业的运行为切入点,将spark运行过程中涉及到的各个步骤,包括DAG图的划分,任务集的创建,资源分配, ...

  6. spark 笔记 2: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

    http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf  ucb关于spark的论文,对spark中核心组件RDD最原始.本质的理解, ...

  7. 【原】Spark中Job如何划分为Stage

    版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html 1.Spark中 ...

  8. 并发编程学习笔记(13)----ConcurrentLinkedQueue(非阻塞队列)和BlockingQueue(阻塞队列)原理

    · 在并发编程中,我们有时候会需要使用到线程安全的队列,而在Java中如果我们需要实现队列可以有两种方式,一种是阻塞式队列.另一种是非阻塞式的队列,阻塞式队列采用锁来实现,而非阻塞式队列则是采用cas ...

  9. spark笔记 环境配置

    spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx Spar ...

随机推荐

  1. html/css中map和area的应用

    一.使用方法: 因为map标签是与img标签绑定使用的,所以我们需要给map标签添加ID和name属性,让img标签中的usemap属性引用map标签中的id或者name属性(由于浏览器的不同,use ...

  2. 17、RAID和LVM

    一.RAID 1.什么是raid 磁盘阵列(Redundant Arrays of Independent Drives,RAID),有"独立磁盘构成的具有冗余能力的阵列"之意. ...

  3. poj 1007 DNA sorting (qsort)

    DNA Sorting Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 95209   Accepted: 38311 Des ...

  4. Arch Linux 安装 ibus-rime

    参考网站 default.custom.yaml 在方案選單中添加五筆.雙拼 rime-wubi 操作方式 # 删除原rime(可选) sudo pacman -Rs ibus-rime ibus-t ...

  5. 脚本之SSH登录

    脚本之SSH登录 一)[python实现] 导入pxssh模块 常用的三个方法: Login() 建立ssh连接 Logout() 断开连接 Prompt() 等待系统提示符,用于等待命令执行结束 S ...

  6. MySQL字段值按照拼音首字母排序

    最简单.快速的方法: 将需要进行排序的字段编码设置为GBK,然后在查询时直接使用asc/desc就可以啦

  7. Some notes of An Insider's Guide to TOEFL iBT

    尽早把托福这个坑填上方是正道,在正式上托福课之前阅读了这本Guide,颇受启发——只要是考试,总是有固定的方法的= = An Insider's Guide to TOEFL iBT It is NO ...

  8. 标准C语言(3)

    操作符用来描述对数字的处理规则根据操作符所需要配合的数字个数把操作符分为单目操作符,双目操作符和三目操作符 C语言里用+,-,*和/表示加减乘除四则运算,它们都是双目操作符,如果参与除法计算的两个数字 ...

  9. 检测字符串是否为UTF8编码

    /** * 检测字符串是否为UTF8编码 * @param string $str 被检测的字符串 * @return boolean */ function is_utf8($str){ $len ...

  10. mysql5.7.26部署MHA

    前期准备: mysql先部署好GTID主从,然后才部署MHA 1)环境准备(所有节点) #安装依赖包 yum install perl-DBD-MySQL -y #进入安装包存放目录 [root@my ...