Directed Roads CodeForces - 711D (基环外向树 )
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
Examples
Input
3
2 3 1
Output
6
Input
4
2 1 1 1
Output
8
Input
5
2 4 2 5 3
Output
28
Note
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , , initially. Number the roads 1 to 3 in this order.
The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.
The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.
题意:

思路:

细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
std::vector<int> son[maxn];
int n;
int depth[maxn];
bool vis[maxn];
ll num=0ll;
int flag=1;
void dfs(int id,int pre,int step)
{
vis[id]=1;
depth[id]=step;
for(auto x:son[id])
{
if(x!=pre)
{
if(vis[x]&&flag)
{
num=depth[id]-depth[x]+1ll;
flag=0;
}
if(!vis[x])
dfs(x,id,step+1);
}
if(x==pre)
{
pre=-1;
}
}
}
const ll mod=1e9+7;
int far[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n;
int x;
repd(i,1,n)
{
cin>>x;
son[x].pb(i);
son[i].pb(x);
}
ll temp=n;
ll ans=1ll;
repd(i,1,n)
{
if(!vis[i])
{
flag=1;
dfs(i,-1,0);
temp-=num;
ans=(ans*((powmod(2ll,num,mod)-2ll+mod)%mod))%mod;
}
}
ans=(ans*(powmod(2ll,temp,mod)))%mod;
cout<<ans<<endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Directed Roads CodeForces - 711D (基环外向树 )的更多相关文章
- codeforces 875F(基环外向树)
题意 有一个左边m个点,右边n个点的二分图(n,m<=1e5),左边每个点向右边恰好连两条权值相同的边. 求这个二分图的最优匹配 分析 对于这种二选一问题,即左边的a连向右边的b和c,权值为d, ...
- bzoj 1040 [ZJOI2008]骑士(基环外向树,树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权 ...
- [BZOJ 1040] [ZJOI2008] 骑士 【基环+外向树DP】
题目链接:BZOJ - 1040 题目分析 这道题目的模型就是一个图,不一定联通,每个连通块的点数等于边数. 每个连通块都是一个基环+外向树.即树上增加了一条边. 如果是树,就可以直接树形DP了.然而 ...
- [bzoj] 1040 骑士 || 基环外向树dp
原题 给出n个点n条边和每个点的点权,一条边的两个断点不能同时选择,问最大可以选多少. //图是一张基环外向树森林 是不是很像舞会啊- 就是多了一条边. 所以我们考虑一下对于一棵基环外向树,拆掉一条在 ...
- 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士
基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...
- BZOJ1040 骑士 基环外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6421 Solved: 2544[Submit][Status ...
- 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)
点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...
- 洛谷 2921 记忆化搜索 tarjan 基环外向树
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然 ...
- 1040: [ZJOI2008]骑士~基环外向树dp
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
随机推荐
- windows怎么远程访问deepin linux桌面
deepin linux端安装anydesk 1.首先点击打开任务栏上的“深度商店” 2.打开后搜索anydesk. 3.点击进入后按“安装”即可,安装完成即可在“深度商店”点击“打开”运行anyde ...
- java 深入HashTable
在java中与有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,value)方法保存起来,然后通过get(key)方法获取相 ...
- Dark 面向对象
1 继承 使用extends继承一个类 子类会继承父类可见的属性和方法,不包含构造方法 可以复写父类的方法 单继承,多态性 构造方法 子类的构造方法会默认调用父类的无名无参构造方法 如果父类没有无名无 ...
- Ruby小白入门笔记之 <Gemfile 文件>
因为初学Ruby,四处查资料无果,才来的贴出亲自试过的操作,覆盖整个个人入门笔记博客中,故所有的操作,都以最明了的方式阐述,当你创建完一个新的Rails应用后,你发现JAVA中我们可以编写maven聚 ...
- [ubuntu]如何实现双屏显示
一.首先直接运行xrandr命令,查看设备的相关信息: 运行之后会显示当前连接设备的屏幕信息,如下图 PS:我已经用HDMI线连接了外接显示器和主机 wangju@wangju-HP--G4:~$ x ...
- Jmeter(五)检查点
录制的脚本回放成功了, 但是运行有可能出现失败的情况, 所以有必要让JMeter来帮我们验证测试结果的正确性. 在Jmeter中是用断言组件来实现此功能的. 首先, 在需要添加断言的请求后面, 添加响 ...
- vim技巧1
在编辑模式或可视模式下输入的命令会另外注明.1. 查找 /xxx(?xxx) 表示在整篇文档中搜索匹配xxx的字符串, / 表示向下查找, ? 表示 ...
- ProxySQL 常见表配置
ProxySQL 常见表配置 [root@mgr1 opt]# rpm -ivh proxysql-1.4.14-1.1.el6.x86_64.rpm warning: proxysql-1.4.14 ...
- JavaScript 积累
1. 基本类型值在内存中占据固定大小的空间,因此被保存在栈空间中: 2. 引用类型的值是对象,保存在堆空间中: 3. 从一个变量向另一个变量复制基本类型的值,会创建这个值的一个副本:从一个变量向另一个 ...
- 自定义Spring-Boot @Enable注解
Spring-Boot中有很多Enable开头的注解,通过添加注解来开启一项功能,如 其原理是什么?如何开发自己的Enable注解? 1.原理 以@EnableScheduling为例,查看其源码,发 ...