今天忙活了3个小时,竟然被一个苦恼的CUDA小例程给困住了,本来是参照Rachal zhang大神的CUDA学习笔记来一个模仿,结果却自己给自己糊里糊涂,最后还是弄明白了一些。

  RZ大神对CUDA关于kernel,memory的介绍还是蛮清楚,看完决定写一个二维数组的加法。如果是C++里的加法,那就简单了,用C[i][j] = A[i][j] +B[i][j]就可以。

 void CppMatAdd(int A[M][N],int B[M][N],int C[M][N]){
for(int i=;i<M;i++)
for(int j=;j<N;j++)
C[i][j] = A[i][j] + B[i][j];
}
 int main()
{
int a[M][N] = {,,,,,,,,,,,};
int b[M][N] = {,,,,,,,,,,,};
int c[M][N] ;
CppMatAdd(a,b,c);
std::cout<<c[][];
} 

运行上面代码,就可以实现二维矩阵(也就是数组)的加法运算。

但是CUDA计算是在GPU上实现的,要划分出专门的内存区域给GPU做运算,结果就是,我们必须划分出主机内存、设备内存分别供CPU、GPU访问。

对于一维的情况,我们设置好主机变量,设备变量即可。具体可以参找RZ的博客。

但是二维的情况麻烦就来了,最一开始我也是设置出主机变量,设备变量,一一对应的分配内存,拷贝数据,GPU运算,最后考出结果。但是发现怎么调试结果都不对,最主要的原因是c++的二维数组实际上是一维数组的指针,所以,无法按照一位数组的模式去拷贝数据,结果相映的写法就麻烦许多,其实说到底还是还原成一维数组的方法去做的加法运算,代码如下,具体就不想赘述了,代码能力有限,慢慢来吧,今天算是把指针弄的更清楚了。

/*--------------------------------------------
* Date:2015-3-18
* Author:李根
* FileName:.cpp
* Description:CUDA二维数组加法
------------------------------------------------*/
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>
#include <stdio.h> static const int M = ;
static const int N = ; //矩阵加法的kernel
__global__ void addMat(int **A,int **B,int **C)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if(i < M && j < N)
C[i][j] = A[i][j] + B[i][j];
} int main()
{int **A = (int **)malloc(M*sizeof(int *)); //host memory
int **B = (int **)malloc(M*sizeof(int *)); //host memory
int **C = (int **)malloc(M*sizeof(int *)); //host memory
int *dataA =(int *)malloc(M*N*sizeof(int )); //host memory data
int *dataB = (int *)malloc(M*N*sizeof(int )); //host memory data
int *dataC =(int *)malloc(M*N*sizeof(int )); //host memory data int **dev_A ; //device memory
int **dev_B ; //device memory
int **dev_C ; //device memory
int *dev_dataA ; //device memory data
int *dev_dataB ; //device memory data
int *dev_dataC ; //device memory data cudaMalloc((void**)(&dev_A), M*sizeof(int*));
cudaMalloc((void**)(&dev_dataA), M*N*sizeof(int));
cudaMalloc((void**)(&dev_B), M*sizeof(int*));
cudaMalloc((void**)(&dev_dataB), M*N*sizeof(int));
cudaMalloc((void**)(&dev_C), M*sizeof(int*));
cudaMalloc((void**)(&dev_dataC), M*N*sizeof(int)); for(int i=;i<M*N;i++)
{
dataA[i] = i;
dataB[i] = i+;
dataC[i] =;
} cudaMemcpy((void*)(dev_dataA), (void*)(dataA), M*N*sizeof(int*), cudaMemcpyHostToDevice);
cudaMemcpy((void*)(dev_dataB), (void*)(dataB), M*N*sizeof(int*), cudaMemcpyHostToDevice); for(int i=;i<M;i++)
{
A[i] = dev_dataA + N*i;
B[i] = dev_dataB + N*i;
C[i] = dev_dataC + N*i;
} cudaMemcpy((void*)(dev_A), (void*)(A), M*sizeof(int*), cudaMemcpyHostToDevice);
cudaMemcpy((void*)(dev_B), (void*)(B), M*sizeof(int*), cudaMemcpyHostToDevice);
cudaMemcpy((void*)(dev_C), (void*)(C), M*sizeof(int*), cudaMemcpyHostToDevice); dim3 threadPerBlock(,);
dim3 numBlocks((N+threadPerBlock.x-)/(threadPerBlock.x), (M+threadPerBlock.y-)/(threadPerBlock.y));
addMat<<<numBlocks,threadPerBlock>>>(dev_A,dev_B,dev_C);
cudaMemcpy((void*)(dataC), (void*)(dev_dataC), M*N*sizeof(int), cudaMemcpyDeviceToHost);
for(int i=;i<M*N;i++)
std::cout<<dataC[i]<<" ";
cudaFree((void*)dev_dataC);
cudaFree((void*)dev_C);
free(C);
free(dataC);
cudaFree((void*)dev_dataB);
cudaFree((void*)dev_B);
free(B);
free(dataB);
cudaFree((void*)dev_dataA);
cudaFree((void*)dev_A);
free(A);
free(dataA);
getchar();
}

博客恢复更新,慢慢的积累吧

CUDA学习之一:二维矩阵加法的更多相关文章

  1. [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  2. [LeetCode] Search a 2D Matrix 搜索一个二维矩阵

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  3. IT公司100题-35- 求一个矩阵中最大的二维矩阵(元素和最大)

    问题描述: 求一个矩阵中最大的二维矩阵(元素和最大).如: 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 中最大的是: 4 5 9 10   分析: 2*2子数组的最大和.遍历求和,时 ...

  4. [CareerCup] 11.6 Search a 2D Matrix 搜索一个二维矩阵

    11.6 Given an M x N matrix in which each row and each column is sorted in ascending order, write a m ...

  5. lintcode:搜索二维矩阵II

    题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...

  6. lintcode :搜索二维矩阵

    题目: 搜索二维矩阵 写出一个高效的算法来搜索 m × n矩阵中的值. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每行的第一个数大于上一行的最后一个整数. 样例 考虑下列矩阵: [ [1 ...

  7. Python小代码_5_二维矩阵转置

    使用列表推导式实现二维矩阵转置 matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] print(matrix) matrix_t = [[ro ...

  8. LeetCode(74):搜索二维矩阵

    Medium! 题目描述: 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例  ...

  9. lintcode-28-搜索二维矩阵

    搜索二维矩阵 写出一个高效的算法来搜索 m × n矩阵中的值. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每行的第一个数大于上一行的最后一个整数. 样例 考虑下列矩阵: [ [1, 3, ...

随机推荐

  1. css 当文字过多时以....省略

    <!-- 公告 --> <p class="rst-promotion">公告: {{shopInfo.rst.promotion_info}}</p ...

  2. 第三节 基本数据写入 --------增加&查询

    启动mongodb服务 net start mongodb 链接mongodb  进入bin目录 mongo 127.0.0.1:12345 启动连接 show dbs   显示所有的数据库 use ...

  3. XML及XML的解析

    XML的用途 充当显示数据(以XML充当显示层) 存储数据的功能 以XML描述数据,并在联系服务器与系统的其余部分之间传递.(传输数据的一种格式),从某种角度来讲,XML是数据封装和消息传递技术 SA ...

  4. "sorted()"中的"Key Functions"

    Pythonsorted()函数中可以加入key=<FUNCTION>参数.作用是每个元素在排序之前,先作为key=<FUNCTION>中FUNCTION的参数,用FUNCTI ...

  5. C# 枚举的声名和使用

    namespace xxxxxx { public enum EnumTextHAlign { Left = , Center = , Right = } } using xxxxxx;

  6. 详解如何定义SQL Server外关键字约束

    SQL Server外关键字约束定义了表之间的关系.当一个表中的一个列或多个列的组合和其它表中的主关键字定义相同时,就可以将这些列或列的组合定义为外关键字,并设定它适合哪个表中哪些列相关联.这样,当在 ...

  7. 原理图和PCB元件对应查找--Altium Designer

    画PCB的时候,需要经常的去查看原理图上对应的元件,元件数目少还好找,数目多了找起来就比较扯淡.还好Altium Designer提供了不错的交叉查找功能. 建议使用两个显示器,一个显示器放原理图,另 ...

  8. Java反射之方法反射demo

    package reflect; import java.lang.reflect.Method; public class ClassDemo3 { public static void main( ...

  9. tp5怎么验证手机号码

    直接上干货

  10. AGC024B Backfront

    题目大意 给你一个1~n的排列 你有两个操作:将一个数移到最后或将一个数移到最前 问将排列排序最少要几次操作 分析 年纪大了,脑子不行了.. 实际我们只需求出对与一段连续的数它在排列中已经有序的最长长 ...