链接:

https://nanti.jisuanke.com/t/41403

题意:

State Z is a underwater kingdom of the Atlantic Ocean. This country is amazing. There are nn cities in the country and n-1n−1 undirected underwater roads which connect all cities.

In order to save energy and avoid traffic congestion, the king promulgated a series of traffic regulations:

Residents have to travel on fish!

Residents need to feed the fish before you start your trip!The amount of food you feed the fish should be exactly the total distance of your journey.

What kind of food to feed depends on the total distance of your journey!Total distance is a multiple of three. You should feed the fish with Durian. Total distance modulus 33 equaling 11. It should be Papaya.Total distance modulus 33 equaling 22. It should be Avocado!!!

Sure, fish like to eat these fruits very much.

Today is the first day of the king's decree. Because the residents here are not good at mathematics, they don't know how much fruit they need to give fish to go to other cities. So the king give an order to the energy minister Ynaonlctrm From all cities to all cities directly, which means that he will make n*(n-1)n∗(n−1) trips.

For example, A - (5 mile) - B - (5 mile) - C, he needs to run the fish, starting at A, passing B, finally arriving C (papaya 10 kg), also he needs to start at C and end at A (papaya 10 kg). Indirect passage is useless. "I've passed City B, my dear emperor." "Oh! It's no use! Not directly! People in cities will never know how much the fish need to eat! The fish will surely die!!! You also need to take several trips which start at B or end with B!" The Emperor said.

It's really a tough task. Can you help him figure out how much fruit he needs to prepare for the emperor's mission?

思路:

题解是树上DP, 比赛时候想到DP,和点分治,但是都没怎么学过, 赛后看题解..还要换根..没听过.

换根就是先DFS一遍之后,根据第一遍DFS得到的结果去处理第二遍DFS,第二遍DFS就是将每个点都看成一个根.

本题令Cnt1[i][j]为以root为根,i的子树中距i的距离%3为j的点的数量.Dp1[i][j]则是i的子树中距i为j的距离路径总和.

这两种状态可以用一遍DFS求得, root就是自己设的根.

第二遍DFS就是处理每个点为根的情况.

考虑Cnt2[i][j], 在以root为根的情况下, 非i的子节点到i的距离%3为j的节点个数.

令v为当前节点, u为其父节点

推出式子

Cnt2[v][(j+len)%3] = Cnt1[u][j]-Cnt1[v][((j-len)%3+3)%3]+Cnt2[u][j].

其中因为u的子节点包括了v的子节点, 需要处理掉.就是减掉.在加上父亲非子节点的贡献.

考虑路径和.同理, 减掉多余的贡献.加上父亲节点的非子节点的贡献.具体看代码.

点分治代码留着补

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 2e4+10; struct Node
{
int to;
int dis;
}; int Cnt1[MAXN][3], Cnt2[MAXN][3];
LL Dp1[MAXN][3], Dp2[MAXN][3];
LL res[3];
vector<Node> G[MAXN];
int n; void Dfs1(int u, int v)
{
Cnt1[v][0] = 1;
for (int i = 0;i < G[v].size();i++)
{
int to = G[v][i].to;
int len = G[v][i].dis;
if (to == u)
continue;
Dfs1(v, to);
for (int j = 0;j < 3;j++)
{
Cnt1[v][(j+len)%3] += Cnt1[to][j];
Dp1[v][(j+len)%3] = (Dp1[v][(j+len)%3] + Dp1[to][j] + (len*Cnt1[to][j])%MOD)%MOD;
}
}
} void Dfs2(int u, int v)
{
// cout << u << ' ' << v << endl;
for (int i = 0;i < G[v].size();i++)
{
int to = G[v][i].to;
int len = G[v][i].dis;
if (to == u)
continue;
for (int j = 0;j < 3;j++)
{
Cnt2[to][(j+len)%3] = Cnt1[v][j] - Cnt1[to][((j-len)%3+3)%3] + Cnt2[v][j];
Dp2[to][(j+len)%3] = ((((Dp1[v][j] - Dp1[to][((j-len)%3+3)%3]) - (len*Cnt1[to][((j-len)%3+3)%3]))%MOD+MOD)%MOD
+ Dp2[v][j] + (len*Cnt2[to][(j+len)%3])%MOD)%MOD;
}
Dfs2(v, to);
}
} int main()
{
while (~scanf("%d", &n))
{
for (int i = 1;i <= n;i++)
G[i].clear();
memset(Cnt1, 0, sizeof(Cnt1));
memset(Cnt2, 0, sizeof(Cnt2));
memset(Dp1, 0, sizeof(Dp1));
memset(Dp2, 0, sizeof(Dp2));
memset(res, 0, sizeof(res));
int l, r, v;
for (int i = 1;i < n;i++)
{
scanf("%d%d%d", &l, &r, &v);
l++, r++;
G[l].push_back(Node{r, v});
G[r].push_back(Node{l, v});
}
Dfs1(0, 1);
Dfs2(0, 1);
for (int i = 1;i <= n;i++)
{
for (int j = 0;j < 3;j++)
res[j] = (res[j] + Dp1[i][j] + Dp2[i][j])%MOD;
}
printf("%lld %lld %lld\n", res[0], res[1], res[2]);
} return 0;
}

2019ICPC沈阳网络赛-D-Fish eating fruit(树上DP, 换根, 点分治)的更多相关文章

  1. 2019icpc沈阳网络赛 D Fish eating fruit 树形dp

    题意 分别算一个树中所有简单路径长度模3为0,1,2的距离和乘2. 分析 记录两个数组, \(dp[i][k]\)为距i模3为k的子节点到i的距离和 \(f[i][k]\)为距i模3为k的子节点的个数 ...

  2. 2019 沈阳网络赛 D Fish eating fruit ( 树形DP)

    题目传送门 题意:求一颗树中所有点对(a,b)的路径长度,路径长度按照模3之后的值进行分类,最后分别求每一类的和 分析:树形DP \(dp[i][j]\) 表示以 i 为根的子树中,所有子节点到 i ...

  3. 2019ICPC沈阳网络赛-B-Dudu's maze(缩点)

    链接: https://nanti.jisuanke.com/t/41402 题意: To seek candies for Maomao, Dudu comes to a maze. There a ...

  4. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

  5. Fish eating fruit 沈阳网络赛(树形dp)

    Fish eating fruit \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 大体的题意就是给出一棵树,求每一对点之间的距离 ...

  6. 2018 ICPC 沈阳网络赛

    2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...

  7. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  8. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  9. 沈阳网络赛 F - 上下界网络流

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

随机推荐

  1. 华为HCNA乱学Round 5:华为交换机基础

  2. 【Windows】Windows server2008远程桌面只允许同时存在一个会话

    打开控制面板-管理工具,终端服务-终端服务配置 1.连接:RDP-tcp 点右键,属性.网络适配器-最大连接数,只允许1个. 2.终端服务器授权模式:点右键,属性.常规,限制每个用户只能使用一个会话, ...

  3. nginx - 反向代理 - 配置文件模板 - nginx 代理tcp的服务 - 部署示意图

    danjan01deiMac:~ danjan01$ cat /usr/local/etc/nginx/nginx.conf|grep -v '^$' worker_processes 1; even ...

  4. ubantu

    1.win10 到Microsoft store 下载ubantu,并安装 2.开启SSH服务,需要开启openssh-server 删除ssh:sudo apt-get remove --purge ...

  5. session到底是何时何地生成的

    关于session,之前只是在用,从没考虑到底怎么生成的 今天有空我做了个实验,把监控了一下访问某网站第一二次的请求响应详细信息,终于搞明白了,好了,开始放图  这里发起一个请求,然后我们看下第一次请 ...

  6. PTA(Basic Level)1024.科学计数法

    科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9].[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指 ...

  7. HDU3336 Count the string(kmp

    It is well known that AekdyCoin is good at string problems as well as number theory problems. When g ...

  8. 完全删除MySQL及相关软件

    一.删除mysql服务 个人认为首先删除mysql服务最重要,这个多数人会忘记如何删除 首先是查看自己的mysql服务名,需要用这个服务名进行删除 进入命令行 二.卸载mysql,workbench等 ...

  9. 第二大矩阵面积--(stack)牛客多校第二场-- Second Large Rectangle

    题意: 给你一幅图,问你第二大矩形面积是多少. 思路: 直接一行行跑stack求最大矩阵面积的经典算法,不断更新第二大矩形面积,注意第二大矩形可能在第一大矩形里面. #define IOS ios_b ...

  10. # Doing homework again(贪心)

    # Doing homework again(贪心) 题目链接:Click here~~ 题意: 有 n 门作业,每门作业都有自己的截止期限,当超过截止期限还没有完成作业,就会扣掉相应的分数.问如何才 ...