链接:

https://nanti.jisuanke.com/t/41403

题意:

State Z is a underwater kingdom of the Atlantic Ocean. This country is amazing. There are nn cities in the country and n-1n−1 undirected underwater roads which connect all cities.

In order to save energy and avoid traffic congestion, the king promulgated a series of traffic regulations:

Residents have to travel on fish!

Residents need to feed the fish before you start your trip!The amount of food you feed the fish should be exactly the total distance of your journey.

What kind of food to feed depends on the total distance of your journey!Total distance is a multiple of three. You should feed the fish with Durian. Total distance modulus 33 equaling 11. It should be Papaya.Total distance modulus 33 equaling 22. It should be Avocado!!!

Sure, fish like to eat these fruits very much.

Today is the first day of the king's decree. Because the residents here are not good at mathematics, they don't know how much fruit they need to give fish to go to other cities. So the king give an order to the energy minister Ynaonlctrm From all cities to all cities directly, which means that he will make n*(n-1)n∗(n−1) trips.

For example, A - (5 mile) - B - (5 mile) - C, he needs to run the fish, starting at A, passing B, finally arriving C (papaya 10 kg), also he needs to start at C and end at A (papaya 10 kg). Indirect passage is useless. "I've passed City B, my dear emperor." "Oh! It's no use! Not directly! People in cities will never know how much the fish need to eat! The fish will surely die!!! You also need to take several trips which start at B or end with B!" The Emperor said.

It's really a tough task. Can you help him figure out how much fruit he needs to prepare for the emperor's mission?

思路:

题解是树上DP, 比赛时候想到DP,和点分治,但是都没怎么学过, 赛后看题解..还要换根..没听过.

换根就是先DFS一遍之后,根据第一遍DFS得到的结果去处理第二遍DFS,第二遍DFS就是将每个点都看成一个根.

本题令Cnt1[i][j]为以root为根,i的子树中距i的距离%3为j的点的数量.Dp1[i][j]则是i的子树中距i为j的距离路径总和.

这两种状态可以用一遍DFS求得, root就是自己设的根.

第二遍DFS就是处理每个点为根的情况.

考虑Cnt2[i][j], 在以root为根的情况下, 非i的子节点到i的距离%3为j的节点个数.

令v为当前节点, u为其父节点

推出式子

Cnt2[v][(j+len)%3] = Cnt1[u][j]-Cnt1[v][((j-len)%3+3)%3]+Cnt2[u][j].

其中因为u的子节点包括了v的子节点, 需要处理掉.就是减掉.在加上父亲非子节点的贡献.

考虑路径和.同理, 减掉多余的贡献.加上父亲节点的非子节点的贡献.具体看代码.

点分治代码留着补

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 2e4+10; struct Node
{
int to;
int dis;
}; int Cnt1[MAXN][3], Cnt2[MAXN][3];
LL Dp1[MAXN][3], Dp2[MAXN][3];
LL res[3];
vector<Node> G[MAXN];
int n; void Dfs1(int u, int v)
{
Cnt1[v][0] = 1;
for (int i = 0;i < G[v].size();i++)
{
int to = G[v][i].to;
int len = G[v][i].dis;
if (to == u)
continue;
Dfs1(v, to);
for (int j = 0;j < 3;j++)
{
Cnt1[v][(j+len)%3] += Cnt1[to][j];
Dp1[v][(j+len)%3] = (Dp1[v][(j+len)%3] + Dp1[to][j] + (len*Cnt1[to][j])%MOD)%MOD;
}
}
} void Dfs2(int u, int v)
{
// cout << u << ' ' << v << endl;
for (int i = 0;i < G[v].size();i++)
{
int to = G[v][i].to;
int len = G[v][i].dis;
if (to == u)
continue;
for (int j = 0;j < 3;j++)
{
Cnt2[to][(j+len)%3] = Cnt1[v][j] - Cnt1[to][((j-len)%3+3)%3] + Cnt2[v][j];
Dp2[to][(j+len)%3] = ((((Dp1[v][j] - Dp1[to][((j-len)%3+3)%3]) - (len*Cnt1[to][((j-len)%3+3)%3]))%MOD+MOD)%MOD
+ Dp2[v][j] + (len*Cnt2[to][(j+len)%3])%MOD)%MOD;
}
Dfs2(v, to);
}
} int main()
{
while (~scanf("%d", &n))
{
for (int i = 1;i <= n;i++)
G[i].clear();
memset(Cnt1, 0, sizeof(Cnt1));
memset(Cnt2, 0, sizeof(Cnt2));
memset(Dp1, 0, sizeof(Dp1));
memset(Dp2, 0, sizeof(Dp2));
memset(res, 0, sizeof(res));
int l, r, v;
for (int i = 1;i < n;i++)
{
scanf("%d%d%d", &l, &r, &v);
l++, r++;
G[l].push_back(Node{r, v});
G[r].push_back(Node{l, v});
}
Dfs1(0, 1);
Dfs2(0, 1);
for (int i = 1;i <= n;i++)
{
for (int j = 0;j < 3;j++)
res[j] = (res[j] + Dp1[i][j] + Dp2[i][j])%MOD;
}
printf("%lld %lld %lld\n", res[0], res[1], res[2]);
} return 0;
}

2019ICPC沈阳网络赛-D-Fish eating fruit(树上DP, 换根, 点分治)的更多相关文章

  1. 2019icpc沈阳网络赛 D Fish eating fruit 树形dp

    题意 分别算一个树中所有简单路径长度模3为0,1,2的距离和乘2. 分析 记录两个数组, \(dp[i][k]\)为距i模3为k的子节点到i的距离和 \(f[i][k]\)为距i模3为k的子节点的个数 ...

  2. 2019 沈阳网络赛 D Fish eating fruit ( 树形DP)

    题目传送门 题意:求一颗树中所有点对(a,b)的路径长度,路径长度按照模3之后的值进行分类,最后分别求每一类的和 分析:树形DP \(dp[i][j]\) 表示以 i 为根的子树中,所有子节点到 i ...

  3. 2019ICPC沈阳网络赛-B-Dudu's maze(缩点)

    链接: https://nanti.jisuanke.com/t/41402 题意: To seek candies for Maomao, Dudu comes to a maze. There a ...

  4. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

  5. Fish eating fruit 沈阳网络赛(树形dp)

    Fish eating fruit \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 大体的题意就是给出一棵树,求每一对点之间的距离 ...

  6. 2018 ICPC 沈阳网络赛

    2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...

  7. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  8. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  9. 沈阳网络赛 F - 上下界网络流

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

随机推荐

  1. 【VS开发】PCIe体系结构的组成部件

    PCIe总线作为处理器系统的局部总线,其作用与PCI总线类似,主要目的是为了连接处理器系统中的外部设备,当然PCIe总线也可以连接其他处理器系统.在不同的处理器系统中,PCIe体系结构的实现方法略有不 ...

  2. kafka的错误日志log监控

    例如:需要监控下面的日志中的error 日志文件是这个 /data1/confluent-5.2.2/logs/connect/kafka-connect.log 1/ 参考上一篇安装zabbix_a ...

  3. 与高精死杠的几天——记两道简单的高精dp

    (同样也是noip往年的题 1​.矩阵取数游戏 题目链接[Luogu P1005 矩阵取数游戏] \(\mathcal{SOLUTION}:\) 通过对题目条件的分析,我们可以发现,每一行取数对答案的 ...

  4. C++练习 | 最长公共字符串(DP)

    HDU 1159.Common Subsequence #include<iostream> #include<stdio.h> #include<string> ...

  5. Java new运算符解析

    1.创建数组时,不使用new操作符 Person [] a; a[0]=new Person(); //Error:variable a might not have been initialized ...

  6. 在CentOS 7系统下升级 Jenkins版本

    使用yum方式安装的war文件路径:/usr/lib/jenkins/jenkins.war 查看war包所在的目录 find / -name jenkins.war 停止Jenkins 服务 sys ...

  7. kubeadm安装k8s1.13

    1.环境介绍: centos 7.4.1708 关闭selinux和iptable,环境很重要! 主机 ip地址 cpu核数 内存 swap host解析 k8s-master 10.0.0.11 2 ...

  8. flaskbb部署笔记

    https://flaskbb.org/ https://github.com/sh4nks/flaskbb/ https://flaskbb.readthedocs.io/en/latest/ins ...

  9. c++ 实现https网页上的图片爬取

    一.主要的原理 我们通过发送一个http请求,获得目标网页的html源代码,然后通过正则表达式获取到图片的URL,把该网页的所有的图片都保存到一个文件夹,这就是整个软件的流程. 二.具体的实践 现在很 ...

  10. service与pod关联

    当我们创建pod时,仅仅是创建了pod,要为其创建rc(ReplicationController),他才会有固定的副本,然后为其创建service,集群内部才能访问该pod,使用 NodePort ...