ES的聚合操作
构建数据:
@Test
public void createIndex(){
/**
* 创建索引
* */
client.admin().indices().prepareCreate("player").get();
}
/**
* 创建映射
*/
@Test
public void testCreateIndexMapping_boost() throws Exception{
/**
* 格式:
"mappings": {
"player": {
"properties": {
"name": {"index": "not_analyzed","type": "string"},
"age": {"type": "integer"},
"salary": {"type": "integer"},
"team": {"index": "not_analyzed","type": "string"},
"position": {"index": "not_analyzed","type": "string"}
}
}
}
*/
//构建json的数据格式,创建映射
XContentBuilder mappingBuilder = XContentFactory.jsonBuilder()
.startObject()
.startObject("player")
.startObject("properties")
.startObject("name").field("type","string").field("index", "not_analyzed").endObject()
.startObject("age").field("type","integer").endObject()
.startObject("salary").field("type","integer").endObject()
.startObject("team").field("type","string").field("index", "not_analyzed").endObject()
.startObject("position").field("type","string").field("index", "not_analyzed").endObject()
.endObject()
.endObject()
.endObject();
PutMappingRequest request = Requests.putMappingRequest("player")
.type("player")
.source(mappingBuilder);
client.admin().indices().putMapping(request).get();
}
@Test
public void BulkInsertDocument() throws IOException {
BulkRequestBuilder bulkRequest = client.prepareBulk();
// either use client#prepare, or use Requests# to directly build index/delete requests
bulkRequest.add(client.prepareIndex("player", "player", "1")
.setSource(jsonBuilder()
.startObject()
.field("name", "郭德纲")
.field("age", 33)
.field("salary",3000)
.field("team" , "cav")
.field("position" , "sf")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "2")
.setSource(jsonBuilder()
.startObject()
.field("name", "于谦")
.field("age", 25)
.field("salary",2000)
.field("team" , "cav")
.field("position" , "pg")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "3")
.setSource(jsonBuilder()
.startObject()
.field("name", "岳云鹏")
.field("age", 29)
.field("salary",1000)
.field("team" , "war")
.field("position" , "pg")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "4")
.setSource(jsonBuilder()
.startObject()
.field("name", "孙越")
.field("age", 26)
.field("salary",2000)
.field("team" , "war")
.field("position" , "sg")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "5")
.setSource(jsonBuilder()
.startObject()
.field("name", "张云雷")
.field("age", 26)
.field("salary",2000)
.field("team" , "war")
.field("position" , "pf")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "6")
.setSource(jsonBuilder()
.startObject()
.field("name", "爱迪生")
.field("age", 40)
.field("salary",1000)
.field("team" , "tim")
.field("position" , "pf")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "7")
.setSource(jsonBuilder()
.startObject()
.field("name", "牛顿")
.field("age", 21)
.field("salary",500)
.field("team" , "tim")
.field("position" , "c")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "4")
.setSource(jsonBuilder()
.startObject()
.field("name", "爱因斯坦")
.field("age", 21)
.field("salary",300)
.field("team" , "tim")
.field("position" , "sg")
.endObject()
)
);
bulkRequest.add(client.prepareIndex("player", "player", "8")
.setSource(jsonBuilder()
.startObject()
.field("name", "特斯拉")
.field("age", 20)
.field("salary",500)
.field("team" , "tim")
.field("position" , "sf")
.endObject()
)
);
BulkResponse bulkResponse = bulkRequest.get();
if (bulkResponse.hasFailures()) {
// process failures by iterating through each bulk response item
}
}
1:分组求count
计算每个球队的球员数量:
select team, count(*) as player_count from player group by team;
@Test
public void groupAndCount() {
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
//3:将聚合条件放入查询条件中
builder.addAggregation(team);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
System.out.println(teamTerms);
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
System.out.println("每个球队 :" + bucket.getKey() + "有 【"+bucket.getDocCount()+"】 个人");
}
}
2:Group by 多个字段
计算每个球队每个位置的球员数 select team, position, count(*) as pos_count from player group by team,position;
/**
* group by 多个字段
* 计算每个球队每个位置的球员数
* select team, position, count(*) as pos_count from player group by team, position;
* */
@Test
public void groupMutilFields() {
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
TermsAggregationBuilder potition = AggregationBuilders.terms("position_count").field("position");
//注意父子关系
team.subAggregation(potition);
//3:将聚合条件放入查询条件中
builder.addAggregation(team).addAggregation(potition);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
//8:获取所有子聚合
Map<String, Aggregation> position_map = bucket.getAggregations().asMap();
StringTerms potitionTerms = (StringTerms)position_map.get("position_count");
//9:对子集合下面的内容迭代 队名--位置--球员
Iterator<StringTerms.Bucket> sub_iterator = potitionTerms.getBuckets().iterator();
while (sub_iterator.hasNext()){
StringTerms.Bucket sub_bucket = sub_iterator.next();
System.out.println("球队 :" + bucket.getKey() + "下面的 "+sub_bucket.getKey()+"的位置 有"+sub_bucket.getDocCount());
}
}
}
3:分组求最大
计算每个球队年龄最大/最小/总/平均的球员年龄
select team, max(age) as max_age from player group by team;
/**
* 分组求:最大值、最小值、平均值
* 计算每个球队年龄最大/最小/总/平均的球员年龄
select team, max(age) as max_age from player group by team;
*
* */
@Test
public void groupMax(){
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
//3: 指定要查哪一个字段的最大值
MaxAggregationBuilder ageFiled = AggregationBuilders.max("max_age").field("age");
//: 找到聚合关系:父子关系
team.subAggregation(ageFiled);
//3:将聚合条件放入查询条件中
builder.addAggregation(team);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
//8:获取所有子聚合
Map age_map = bucket.getAggregations().asMap();
int age = (int)((InternalMax) age_map.get("max_age")).getValue();
System.out.println("球队 :" + bucket.getKey() + " 最大年龄: "+age);
}
}
4:分组求最小
计算每个球队年龄最大/最小/总/平均的球员年龄 select team, min(age) as max_age from player group by team;
/**
* 分组求:最大值、最小值、平均值
* 计算每个球队年龄最大/最小/总/平均的球员年龄
select team, min(age) as max_age from player group by team;
*
* */
@Test
public void groupMin(){
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
//3: 指定要查哪一个字段的最大值
MinAggregationBuilder ageFiled = AggregationBuilders.min("min_age").field("age");
//: 找到聚合关系:父子关系
team.subAggregation(ageFiled);
//3:将聚合条件放入查询条件中
builder.addAggregation(team);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
//8:获取所有子聚合
Map age_map = bucket.getAggregations().asMap();
int age = (int)((InternalMin) age_map.get("max_age")).getValue();
System.out.println("球队 :" + bucket.getKey() + " 最小年龄: "+age);
}
}
5:分组求平均值
计算每个球队年龄最大/最小/总/平均的球员年龄 select team, min(age) as max_age from player group by team;
/**
* 分组求:最大值、最小值、平均值
* 计算每个球队年龄最大/最小/总/平均的球员年龄
select team, min(age) as max_age from player group by team;
*
* */
@Test
public void groupAvg(){
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
//3: 指定要查哪一个字段的最大值
AvgAggregationBuilder ageFiled = AggregationBuilders.avg("avg_age").field("age");
//: 找到聚合关系:父子关系
team.subAggregation(ageFiled);
//3:将聚合条件放入查询条件中
builder.addAggregation(team);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
//8:获取所有子聚合
Map age_map = bucket.getAggregations().asMap();
Double age = ((InternalAvg) age_map.get("avg_age")).getValue();
System.out.println("球队 :" + bucket.getKey() + " 平均年龄: "+age);
}
}
6:分组求和
计算每个球队球员的平均年龄,同时又要计算总年薪 select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;
/**
* 分组求:最大值、最小值、平均值
* 计算每个球队球员的平均年龄,同时又要计算总年薪
select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;
*
* */
@Test
public void groupsum(){
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
//3: 指定要查哪一个字段
AvgAggregationBuilder ageFiled = AggregationBuilders.avg("avg_age").field("age");
SumAggregationBuilder salaryField= AggregationBuilders.sum("sum_salary").field("salary");
//: 找到聚合关系:父子关系
team.subAggregation(ageFiled).subAggregation(salaryField);
//3:将聚合条件放入查询条件中
builder.addAggregation(team);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
//8:获取所有子聚合
Map age_map = bucket.getAggregations().asMap();
Double age = ((InternalAvg) age_map.get("avg_age")).getValue();
double sum_salary = ((InternalSum) age_map.get("sum_salary")).getValue();
System.out.println("球队 :" + bucket.getKey() + " 平均年龄: "+age + " 球队总salary:" + sum_salary);
}
}
7:聚合排序
计算每个球队总年薪,并按照总年薪倒序排列 select team, sum(salary) as total_salary from player group by team order by total_salary desc;
/**
* 排序
计算每个球队总年薪,并按照总年薪倒序排列
select team, sum(salary) as total_salary from player group by team order by total_salary desc;
* */
@Test
public void groupOrder(){
/**
*
* TermsBuilder teamAgg= AggregationBuilders.terms("team").order(Order.aggregation("total_salary ", false);
SumBuilder salaryAgg= AggregationBuilders.avg("total_salary ").field("salary");
sbuilder.addAggregation(teamAgg.subAggregation(salaryAgg));
* */
//1:构建查询提交
SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
//2:指定聚合条件
TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team")
.order(Terms.Order.aggregation("total_salary", false));//false是降序,true是升序
//3: 指定要查哪一个字段
SumAggregationBuilder salaryField= AggregationBuilders.sum("total_salary").field("salary");
//: 找到聚合关系:父子关系
team.subAggregation(salaryField);
//3:将聚合条件放入查询条件中
builder.addAggregation(team);
//4:执行action,返回searchResponse
SearchResponse searchResponse = builder.get();
//5:将查询返回的searchResponse转换成map
Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
//6:取出聚合的字段
StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
//7:对聚合的字段进行迭代
Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
while (iterator.hasNext()){
StringTerms.Bucket bucket = iterator.next();
//8:获取所有子聚合
Map age_map = bucket.getAggregations().asMap();
double sum_salary = ((InternalSum) age_map.get("total_salary")).getValue();
System.out.println("球队 :" + bucket.getKey() + " 球队总salary:" + sum_salary);
}
}
ES的聚合操作的更多相关文章
- (转载)es进行聚合操作时提示Fielddata is disabled on text fields by default
原文地址:http://blog.csdn.net/u011403655/article/details/71107415 根据es官网的文档执行 GET /megacorp/employee/_se ...
- (转)es进行聚合操作时提示Fielddata is disabled on text fields by default
根据es官网的文档执行 GET /megacorp/employee/_search { "aggs": { "all_interests": { " ...
- es进行聚合操作时提示Fielddata is disabled on text fields by default
在进行派粗前,先执行以下操作 { "properties": { "updatedate": { "type": "text&qu ...
- ElasticSearch 学习记录之ES几种常见的聚合操作
ES几种常见的聚合操作 普通聚合 POST /product/_search { "size": 0, "aggs": { "agg_city&quo ...
- ES Terms 聚合数据不确定性
Elasticsearch是一个分布式的搜索引擎,每个索引都可以有多个分片,用来将一份大索引的数据切分成多个小的物理索引,解决单个索引数据量过大导致的性能问题,另外每个shard还可以配置多个副本,来 ...
- 【ELK】4.spring boot 2.X集成ES spring-data-ES 进行CRUD操作 完整版+kibana管理ES的index操作
spring boot 2.X集成ES 进行CRUD操作 完整版 内容包括: ============================================================ ...
- Elasticsearch学习(4) spring boot整合Elasticsearch的聚合操作
之前已将spring boot原生方式介绍了,接下将结介绍的是Elasticsearch聚合操作.聚合操作一般来说是解决一下复杂的业务,比如mysql中的求和和分组,由于博主踩的坑比较多,所以博客可能 ...
- java es 骤合操作
ElasticSearch java API - 聚合查询 以球员信息为例,player索引的player type包含5个字段,姓名,年龄,薪水,球队,场上位置.index的mapping为: &q ...
- 36.分组聚合操作—bucket进行多层嵌套
主要知识点: 分组聚合操作-嵌套bucket. 本讲以前面电商实例,从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格. 比如说,现在红色的电视有4台,同 ...
随机推荐
- Hive调优参数配置
Hive进行大数据处理的过程中经常遇到一个任务跑几个小时或者内存溢出等问题,平时会任务执行的遇到的问题 进行参数的调整配置,收集整理的配置参考如下: set dfs.namenode.handler. ...
- 极*Java速成教程 - (7)
Java高级特性 数组 在Java中,数组是一串连续的,不可改变长度的,对象被固定的,类型固定的连续空间.数组中的随机访问非常迅速,但为了速度放弃了灵活性.而效率也是数组最大的优点. 在使用泛型的容器 ...
- 提高CUI测试稳定性技术
GUI自动化测试稳定性,最典型的表现形式就是,同样的测试用例在同样的环境上,时而测试通 过,时而测试失败. 这也是影响GUI测试健康发展的一个重要障碍,严重降低了GUI测试的可信性. 五种造成GUI测 ...
- 搜索专题: HDU1372Knight Moves
Knight Moves Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...
- Delphi XE2_XE3 Update
Delphi 和 C++Builder XE2 更新摘要 XE2的关键特性如下: 1. FireMonkey Application Platform支持运行在Windows (32和64位),Mac ...
- 深度学习之depthwise separable convolution,计算量及参数量
目录: 1.什么是depthwise separable convolution? 2.分析计算量.flops 3.参数量 4.与传统卷积比较 5.reference
- js实现完整轮播
1.封装一个简单的动画函数 function animate(obj,target,callback){ clearInterval(obj.timer);//清除定时器防止定时器重复添加 obj.t ...
- JS中对象的定义及相关操作
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- Nginx服务项的基本配置
由于Nginx配置项较多,把他们按照用户使用时的预期功能分为以下4类: 1.调试,定位问题的配置项 2.正常运行必备配置项 3.优化性能配置项 4.事件类配置项 1. 用于调试进程,定位问题的配置项 ...
- PAT Advanced 1027 Colors in Mars (20 分)
People in Mars represent the colors in their computers in a similar way as the Earth people. That is ...