构建数据:


   @Test
   public void createIndex(){
       /**
        * 创建索引
        * */
       client.admin().indices().prepareCreate("player").get();
  }



   /**
    * 创建映射
    */
   @Test
   public void testCreateIndexMapping_boost() throws Exception{
       /**
        * 格式:
        "mappings": {
           "player": {
               "properties": {
                    "name": {"index": "not_analyzed","type": "string"},
                   "age": {"type": "integer"},
                   "salary": {"type": "integer"},
                   "team": {"index": "not_analyzed","type": "string"},
                   "position": {"index": "not_analyzed","type": "string"}
               }
           }
        }

        */
       //构建json的数据格式,创建映射
       XContentBuilder mappingBuilder = XContentFactory.jsonBuilder()
              .startObject()
              .startObject("player")
              .startObject("properties")
              .startObject("name").field("type","string").field("index", "not_analyzed").endObject()
              .startObject("age").field("type","integer").endObject()
              .startObject("salary").field("type","integer").endObject()
              .startObject("team").field("type","string").field("index", "not_analyzed").endObject()
              .startObject("position").field("type","string").field("index", "not_analyzed").endObject()
              .endObject()
              .endObject()
              .endObject();
       PutMappingRequest request = Requests.putMappingRequest("player")
              .type("player")
              .source(mappingBuilder);
       client.admin().indices().putMapping(request).get();
  }

   @Test
   public void BulkInsertDocument() throws IOException {
       BulkRequestBuilder bulkRequest = client.prepareBulk();

// either use client#prepare, or use Requests# to directly build index/delete requests
       bulkRequest.add(client.prepareIndex("player", "player", "1")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "郭德纲")
                      .field("age", 33)
                      .field("salary",3000)
                      .field("team" , "cav")
                      .field("position" , "sf")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "2")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "于谦")
                      .field("age", 25)
                      .field("salary",2000)
                      .field("team" , "cav")
                      .field("position" , "pg")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "3")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "岳云鹏")
                      .field("age", 29)
                      .field("salary",1000)
                      .field("team" , "war")
                      .field("position" , "pg")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "4")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "孙越")
                      .field("age", 26)
                      .field("salary",2000)
                      .field("team" , "war")
                      .field("position" , "sg")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "5")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "张云雷")
                      .field("age", 26)
                      .field("salary",2000)
                      .field("team" , "war")
                      .field("position" , "pf")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "6")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "爱迪生")
                      .field("age", 40)
                      .field("salary",1000)
                      .field("team" , "tim")
                      .field("position" , "pf")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "7")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "牛顿")
                      .field("age", 21)
                      .field("salary",500)
                      .field("team" , "tim")
                      .field("position" , "c")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "4")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "爱因斯坦")
                      .field("age", 21)
                      .field("salary",300)
                      .field("team" , "tim")
                      .field("position" , "sg")
                      .endObject()
              )
      );
       bulkRequest.add(client.prepareIndex("player", "player", "8")
              .setSource(jsonBuilder()
                      .startObject()
                      .field("name", "特斯拉")
                      .field("age", 20)
                      .field("salary",500)
                      .field("team" , "tim")
                      .field("position" , "sf")
                      .endObject()
              )
      );


       BulkResponse bulkResponse = bulkRequest.get();
       if (bulkResponse.hasFailures()) {
           // process failures by iterating through each bulk response item
      }
  }

1:分组求count

计算每个球队的球员数量:

select team, count(*) as player_count from player group by team;

@Test
public void groupAndCount() {
   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   System.out.println(teamTerms);
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       System.out.println("每个球队 :" + bucket.getKey() + "有 【"+bucket.getDocCount()+"】 个人");
  }

}

2:Group by 多个字段

计算每个球队每个位置的球员数 select team, position, count(*) as pos_count from player group by team,position;

/**
* group by 多个字段
* 计算每个球队每个位置的球员数
* select team, position, count(*) as pos_count from player group by team, position;
* */
@Test
public void groupMutilFields() {
   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
   TermsAggregationBuilder potition = AggregationBuilders.terms("position_count").field("position");
   //注意父子关系
team.subAggregation(potition);
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team).addAggregation(potition);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       //8:获取所有子聚合
       Map<String, Aggregation> position_map = bucket.getAggregations().asMap();
       StringTerms potitionTerms = (StringTerms)position_map.get("position_count");
       //9:对子集合下面的内容迭代 队名--位置--球员
       Iterator<StringTerms.Bucket> sub_iterator = potitionTerms.getBuckets().iterator();
       while (sub_iterator.hasNext()){
           StringTerms.Bucket sub_bucket = sub_iterator.next();
           System.out.println("球队 :" + bucket.getKey() + "下面的 "+sub_bucket.getKey()+"的位置 有"+sub_bucket.getDocCount());
      }
  }
}

3:分组求最大

计算每个球队年龄最大/最小/总/平均的球员年龄

select team, max(age) as max_age from player group by team;


/**
* 分组求:最大值、最小值、平均值
* 计算每个球队年龄最大/最小/总/平均的球员年龄
select team, max(age) as max_age from player group by team;
*
* */
@Test
public void groupMax(){
   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
   //3: 指定要查哪一个字段的最大值
   MaxAggregationBuilder ageFiled = AggregationBuilders.max("max_age").field("age");
   //: 找到聚合关系:父子关系
   team.subAggregation(ageFiled);
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       //8:获取所有子聚合
       Map age_map = bucket.getAggregations().asMap();
       int age = (int)((InternalMax) age_map.get("max_age")).getValue();
       System.out.println("球队 :" + bucket.getKey() + " 最大年龄: "+age);
  }
}

4:分组求最小

计算每个球队年龄最大/最小/总/平均的球员年龄 select team, min(age) as max_age from player group by team;

/**
* 分组求:最大值、最小值、平均值
* 计算每个球队年龄最大/最小/总/平均的球员年龄
select team, min(age) as max_age from player group by team;
*
* */
@Test
public void groupMin(){
   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
   //3: 指定要查哪一个字段的最大值
   MinAggregationBuilder ageFiled = AggregationBuilders.min("min_age").field("age");
   //: 找到聚合关系:父子关系
   team.subAggregation(ageFiled);
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       //8:获取所有子聚合
       Map age_map = bucket.getAggregations().asMap();
       int age = (int)((InternalMin) age_map.get("max_age")).getValue();
       System.out.println("球队 :" + bucket.getKey() + " 最小年龄: "+age);
  }
}

5:分组求平均值

计算每个球队年龄最大/最小/总/平均的球员年龄 select team, min(age) as max_age from player group by team;

/**
* 分组求:最大值、最小值、平均值
* 计算每个球队年龄最大/最小/总/平均的球员年龄
select team, min(age) as max_age from player group by team;
*
* */
@Test
public void groupAvg(){
   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
   //3: 指定要查哪一个字段的最大值
   AvgAggregationBuilder ageFiled = AggregationBuilders.avg("avg_age").field("age");
   //: 找到聚合关系:父子关系
   team.subAggregation(ageFiled);
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       //8:获取所有子聚合
       Map age_map = bucket.getAggregations().asMap();
       Double age = ((InternalAvg) age_map.get("avg_age")).getValue();
       System.out.println("球队 :" + bucket.getKey() + " 平均年龄: "+age);
  }
}

6:分组求和

计算每个球队球员的平均年龄,同时又要计算总年薪 select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;

/**
* 分组求:最大值、最小值、平均值
* 计算每个球队球员的平均年龄,同时又要计算总年薪
select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;
*
* */
@Test
public void groupsum(){
   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
   //3: 指定要查哪一个字段
   AvgAggregationBuilder ageFiled = AggregationBuilders.avg("avg_age").field("age");

   SumAggregationBuilder salaryField= AggregationBuilders.sum("sum_salary").field("salary");
   //: 找到聚合关系:父子关系
   team.subAggregation(ageFiled).subAggregation(salaryField);
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       //8:获取所有子聚合
       Map age_map = bucket.getAggregations().asMap();

       Double age = ((InternalAvg) age_map.get("avg_age")).getValue();
       double sum_salary = ((InternalSum) age_map.get("sum_salary")).getValue();
       System.out.println("球队 :" + bucket.getKey() + " 平均年龄: "+age + " 球队总salary:" + sum_salary);
  }
}

7:聚合排序

计算每个球队总年薪,并按照总年薪倒序排列 select team, sum(salary) as total_salary from player group by team order by total_salary desc;

/**
* 排序
计算每个球队总年薪,并按照总年薪倒序排列
select team, sum(salary) as total_salary from player group by team order by total_salary desc;
* */
@Test
public void groupOrder(){
   /**
    *
    * TermsBuilder teamAgg= AggregationBuilders.terms("team").order(Order.aggregation("total_salary ", false);
    SumBuilder salaryAgg= AggregationBuilders.avg("total_salary ").field("salary");
    sbuilder.addAggregation(teamAgg.subAggregation(salaryAgg));
    * */

   //1:构建查询提交
   SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
   //2:指定聚合条件
   TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team")
          .order(Terms.Order.aggregation("total_salary", false));//false是降序,true是升序
   //3: 指定要查哪一个字段
   SumAggregationBuilder salaryField= AggregationBuilders.sum("total_salary").field("salary");
   //: 找到聚合关系:父子关系
   team.subAggregation(salaryField);
   //3:将聚合条件放入查询条件中
   builder.addAggregation(team);
   //4:执行action,返回searchResponse
   SearchResponse searchResponse = builder.get();
   //5:将查询返回的searchResponse转换成map
   Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
   //6:取出聚合的字段
   StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
   //7:对聚合的字段进行迭代
   Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
   while (iterator.hasNext()){
       StringTerms.Bucket bucket = iterator.next();
       //8:获取所有子聚合
       Map age_map = bucket.getAggregations().asMap();

       double sum_salary = ((InternalSum) age_map.get("total_salary")).getValue();
       System.out.println("球队 :" + bucket.getKey() + " 球队总salary:" + sum_salary);
  }
}

ES的聚合操作的更多相关文章

  1. (转载)es进行聚合操作时提示Fielddata is disabled on text fields by default

    原文地址:http://blog.csdn.net/u011403655/article/details/71107415 根据es官网的文档执行 GET /megacorp/employee/_se ...

  2. (转)es进行聚合操作时提示Fielddata is disabled on text fields by default

    根据es官网的文档执行 GET /megacorp/employee/_search { "aggs": { "all_interests": { " ...

  3. es进行聚合操作时提示Fielddata is disabled on text fields by default

    在进行派粗前,先执行以下操作 { "properties": { "updatedate": { "type": "text&qu ...

  4. ElasticSearch 学习记录之ES几种常见的聚合操作

    ES几种常见的聚合操作 普通聚合 POST /product/_search { "size": 0, "aggs": { "agg_city&quo ...

  5. ES Terms 聚合数据不确定性

    Elasticsearch是一个分布式的搜索引擎,每个索引都可以有多个分片,用来将一份大索引的数据切分成多个小的物理索引,解决单个索引数据量过大导致的性能问题,另外每个shard还可以配置多个副本,来 ...

  6. 【ELK】4.spring boot 2.X集成ES spring-data-ES 进行CRUD操作 完整版+kibana管理ES的index操作

    spring boot 2.X集成ES 进行CRUD操作  完整版 内容包括: ============================================================ ...

  7. Elasticsearch学习(4) spring boot整合Elasticsearch的聚合操作

    之前已将spring boot原生方式介绍了,接下将结介绍的是Elasticsearch聚合操作.聚合操作一般来说是解决一下复杂的业务,比如mysql中的求和和分组,由于博主踩的坑比较多,所以博客可能 ...

  8. java es 骤合操作

    ElasticSearch java API - 聚合查询 以球员信息为例,player索引的player type包含5个字段,姓名,年龄,薪水,球队,场上位置.index的mapping为: &q ...

  9. 36.分组聚合操作—bucket进行多层嵌套

    主要知识点: 分组聚合操作-嵌套bucket.         本讲以前面电商实例,从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格. 比如说,现在红色的电视有4台,同 ...

随机推荐

  1. 第六周总结&第四次实验报告

    实验四 类的继承 一. 实验目的 (1) 掌握类的继承方法: (2) 变量的继承和覆盖,方法的继承.重载和覆盖实现: 二. 实验内容 三.实验过程 实验代码 package Shiyan4; publ ...

  2. Zend Framework MVC的结构

    The Zend Framework MVC Architecture 一.概述: In this chapter, we will cover the following topics:1. Zen ...

  3. iconv编码转换报错问题

    今天,再由ISO-8859编码格式转化为UTF-8格式过程中,出现报错:iconv: 未知 10304 处的非法输入序列. 问题分析:ISO-8859是英文格式的编码方式,不支持中文,为了解决中文支持 ...

  4. 1、Java语言概述与开发环境——Java特性和技术体系平台

    一.Java语言的主要特性 1.Java语言是易学的: Java语言的语法与C语言和C++语言很接近,使得大多数的程序员很容易学习和使用Java. 2.Java语言是强制面向对象的: Java语言提供 ...

  5. Java中的四种权限修饰符

    权限修饰符   public protected [default] private 同一个类 YES YES YES YES 同一个包 YES YES YES NO 不同包子类 YES YES NO ...

  6. Python入门之 函数

    Python入门之 函数 1.初识函数 1.1 什么是函数? <1> 将某个功能封装到一个空间中就是一个函数 <2> 减少重复代码 1.2 定义函数 def -- python ...

  7. Java并发(具体实例)——几个例子

    一步步优化页面渲染功能                                                           本节将模拟一个简单的页面渲染功能,它的作用是将HTML页面绘 ...

  8. git如何将本地文件关联到远程服务器

    很多时候,当我们关联git服务器的时候,本地都有可能会有一些开发的东西需要同步上去.那怎么样设置同步呢!跟我来做,简易配置: git本地关联远程项目:      第一步:选择目录           ...

  9. Netty学习第四章 spring boot整合netty的使用

    现在大多数项目都是基于spring boot进行开发,所以我们以spring boot作为开发框架来使用netty.使用spring boot的一个好处就是能给将netty的业务拆分出来,并通过spr ...

  10. Java并发-CycliBarrier

    栅栏类似于闭锁,它能阻塞一组线程直到某个事件的发生.栅栏与闭锁的关键区别在于,所有的线程必须同时到达栅栏位置,才能继续执行.闭锁用于等待事件,而栅栏用于等待其他线程.package com.examp ...