[BZOI 3994] [SDOI2015]约数个数和

题面

设d(x)为x的约数个数,给定N、M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\)

T组询问,\(N,M,T \leq 50000\)

分析

首先有一个结论

\[d(nm)= \sum _{i |n} \sum _{j|m} [gcd(i,j)=1]
\]

这是因为nm的约数都可以表示为\(i \times \frac{m}{j}\)的形式,并且为了不重复算,要保证\(gcd(i,j)=1\)

因此,我们可以开始推式子

\[ans= \sum_{p=1}^n \sum_{q=1}^m \sum_{i|p} \sum _{j|q} [gcd(i,j)=1]
\]

注意到每对\((i,j)\)会对p,q中他们的倍数产生\(\lfloor \frac{n}{i} \rfloor \times \lfloor \frac{m}{j} \rfloor\) 的贡献

\[= \sum_{i=1}^n \sum_{j=1} ^m [gcd(i,j)=1] \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor
\]

\[= \sum_{i=1}^n \sum_{j=1} ^m \varepsilon (gcd(i,j)) \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor
\]

根据\(\varepsilon (n) = \sum_{d|n} \mu(d)\)

\[= \sum_{i=1}^n \sum_{j=1} ^m \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor \sum_{d|gcd(i,j)} \mu(d)
\]

改变求和顺序,先枚举d,显然若\(d|gcd(i,j)\),则\(d|i,d|j\),

直接把i替换为d的倍数du,j替换为d的倍数dv(\(u,v \in N^+,du\leq n,dv \leq m\))

\[= \sum_{d=1}^{min(n,m)} \mu(d) \sum_{u=1}^{\lfloor n/d \rfloor} \sum_{v=1}^{\lfloor m/d \rfloor} \lfloor \frac{n}{du} \rfloor \lfloor \frac{m}{dv} \rfloor
\]

\[= \sum_{d=1}^{min(n,m)} \mu(d) \sum_{u=1}^{\lfloor n/d \rfloor} \sum_{v=1}^{\lfloor m/d \rfloor} \lfloor \frac{ \lfloor n/d \rfloor}{u} \rfloor \lfloor \frac{\lfloor m/d \rfloor}{v} \rfloor
\]

\[= \sum_{d=1}^{min(n,m)} \mu(d) \sum_{u=1}^{\lfloor n/d \rfloor} \lfloor \frac{ \lfloor n/d \rfloor}{u} \rfloor \sum_{v=1}^{\lfloor m/d \rfloor} \lfloor \frac{\lfloor m/d \rfloor}{v} \rfloor
\]

令\(g(n) = \sum _{d=1}^n \lfloor \frac{n}{d} \rfloor\)

\[=\sum_{d=1}^{min(n,m)} \mu(d) g(\lfloor \frac{n}{d} \rfloor) g(\lfloor \frac{m}{d} \rfloor)
\]

考虑如何快速求值。单个\(g(n)\)可以运用数论分块在\(O(\sqrt n)\)的时间内求出,总时间复杂度\(O(n \sqrt n)\). 然后线性筛出\(\mu\),以及\(\mu,g\)的前缀和

每次询问用数论分块的方法枚举d即可,总时间复杂度\(O(n \sqrt n +T \sqrt n)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 50000
using namespace std;
typedef long long ll;
int t;
int n,m;
int cnt;
bool vis[maxn+5];
int prime[maxn+5];
int mu[maxn+5];
ll sum_mu[maxn+5];
int g[maxn+5];
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else{
mu[i*prime[j]]=-mu[i];
}
}
}
for(int i=1;i<=n;i++) sum_mu[i]=sum_mu[i-1]+mu[i];
for(int i=1;i<=n;i++){
int l,r;
for(l=1;l<=i;l=r+1){
r=i/(i/l);
g[i]+=(ll)(r-l+1)*(i/l);
}
}
} ll calc(int n,int m){
int l,r;
if(n<m) swap(n,m);
ll ans=0;
for(l=1;l<=m;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(sum_mu[r]-sum_mu[l-1])*g[n/l]*g[m/l];
}
return ans;
} int main(){
sieve(maxn);
scanf("%d",&t);
while(t--){
scanf("%d %d",&n,&m);
printf("%lld\n",calc(n,m));
}
}

[BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  2. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  3. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  4. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  5. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  6. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

  7. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  8. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  9. BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...

随机推荐

  1. Azure IoT 技术研究系列4

    上两篇博文中,我们介绍了将设备注册到Azure IoT Hub,设备到云.云到设备之间的通信: Azure IoT 技术研究系列2-设备注册到Azure IoT Hub Azure IoT 技术研究系 ...

  2. MySQL简版(一)

    第一章 数据库的基本概念 1.1 数据库的英文单词 Database,简称DB. 1.2 什么是数据库? 用于存储和管理数据的仓库. 1.3 数据库的特点 持久化存储数据的.其实数据库就是一个文件系统 ...

  3. nginx图片过滤处理模块http_image_filter_module

    nginx图片过滤处理模块http_image_filter_module安装配置笔记 http_image_filter_module是nginx提供的集成图片处理模块,支持nginx-0.7.54 ...

  4. 【NOIP2016提高A组8.11】种树

    题目 分析 题目要求把图删点,删成树. 考虑一下树的定义,点数n=边数m+1 并且,树中点两两之间联通,那么选的点就不能是割点. 可以用tarjan将图中最大的联通块,保证其中点两两之间有不止一条路径 ...

  5. 【JavaScript】 模拟JQuery的连续调用函数

    连续调用,了解调用主体 var zhangsan = { smoke: function () { console.log("Smoking..."); return this; ...

  6. 多重背包的二进制优化——DP

    #include<cstdio> #include<cstring> #include<algorithm> #define LL long long using ...

  7. 【WINDOWS】设置路由表实现有线内网,无线外网

    前提!!! 需要有线无线双网卡

  8. css基础—字体那些事

    css基础-字体那些事 1. 首先讲字的大小样式等 字体大小 font-size: 40px; 文字字体 font-family: "宋体",Arial; 文字样式 font-st ...

  9. fedora18 [linux]Error: failure: repodata/repomd.xml from fedora: [Errno 256] No more mirrors to try.

    在使用fedora17 系统的yum源的时候出现了如下错误: Error: failure: repodata/repomd.xml from fedora: [Errno 256] No more ...

  10. requirejs define a module

    https://requirejs.org/docs/api.html#define Define a Module § 1.3 A module is different from a tradit ...