[AGC005F] Many Easy Problems
题意简述
给定一颗无根树,对于所有大小为 $i$ 的点集,求出能够包含它的所有联通块之和,定义为 $f_i$ ,答案对 $924844033$ 取模。
$n\leq 2\times 10^5$ 。
$solution:$
考虑每个点在点集中起到的贡献,可以得到
$$f_i=n\times\dbinom{n}{k}-\sum_{i=1}^n \dbinom{n-size_i}{k}+\sum_{x\in i} \dbinom{size_x}{k}\\=n\times \dbinom{n}{k}-\sum_{i=k}^n cnt_i\dbinom{i}{k}\\=n\times \dbinom{n}{k}-\dfrac{1}{k}\sum_{i=k}^n \dfrac{i!}{(i-k)}$$
设 $a_i=cnt_i\times i!,b_i=(n-i)!$ 。
则
$$f_i=n\times \dbinom{n}{k}-\sum_{i=k}^n a_i\times b_{n-i+k}$$
直接 $NTT$ 即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define int long long
#define mod 924844033
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
int n,inv[MAXN],head[MAXN],fac[MAXN],infac[MAXN],Cnt,cnt[MAXN],siz[MAXN];
int C(int n,int m){return (((fac[n]*infac[m])%mod)*infac[n-m])%mod;}
struct node{
int u,v,nex;
}x[MAXN<<];
void add(int u,int v){
x[Cnt].u=u,x[Cnt].v=v,x[Cnt].nex=head[u],head[u]=Cnt++;
}
int ksm(int a,int b){
int ans=;
while(b){
if(b&) ans*=a,ans%=mod;
a*=a,a%=mod;
b>>=;
}return ans;
}
void dfs(int u,int fath){
siz[u]=;
for(int i=head[u];i!=-;i=x[i].nex){
if(x[i].v==fath) continue;
dfs(x[i].v,u);
siz[u]+=siz[x[i].v];
cnt[siz[x[i].v]]++;
}
cnt[n-siz[u]]++;
return;
}
int N,M,flip[MAXN],f[MAXN],g[MAXN];
void NTT(int *f,int opt){
for(int i=;i<N;i++) if(i<flip[i]) swap(f[i],f[flip[i]]);
for(int p=;p<=N;p<<=){
int len=p>>,buf=ksm(,(mod-)/p);
if(opt==-) buf=ksm(buf,mod-);
for(int be=;be<N;be+=p){
int tmp=;
for(int l=be;l<be+len;l++){
int t=f[l+len]*tmp;t%=mod;
f[l+len]=(f[l]-t+mod)%mod,f[l]=(f[l]+t)%mod;
tmp*=buf,tmp%=mod;
}
}
}
if(opt==-){
int inv=ksm(N,mod-);
for(int i=;i<N;i++) f[i]*=inv,f[i]%=mod;
}return;
}
signed main(){
// freopen("6.in","r",stdin);
memset(head,-,sizeof(head));
inv[]=;for(int i=;i<=;i++) inv[i]=((mod-mod/i)*inv[mod%i])%mod;
fac[]=;for(int i=;i<=;i++) fac[i]=(fac[i-]*i)%mod;
infac[]=;for(int i=;i<=;i++) infac[i]=(infac[i-]*inv[i])%mod;
n=read();
for(int i=;i<n;i++){
int u=read(),v=read();
add(u,v),add(v,u);
}
dfs(,);
N=n,M=n;
for(int i=;i<=N;i++) f[i]=(cnt[i]*fac[i])%mod;
for(int i=;i<=M;i++) g[i]=infac[n-i];
M+=N;
for(N=;N<=M;N<<=);
for(int i=;i<N;i++) flip[i]=((flip[i>>]>>)|(i&?N>>:));
NTT(f,),NTT(g,);
for(int i=;i<N;i++) f[i]*=g[i],f[i]%=mod;
NTT(f,-);
for(int i=;i<=n;i++){
int a=(n*C(n,i))%mod,b=(infac[i]*f[n+i])%mod;
printf("%lld\n",(((a-b)%mod)+mod)%mod);
}return ;
}
[AGC005F] Many Easy Problems的更多相关文章
- AGC005F Many Easy Problems(NTT)
先只考虑求某个f(k).考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数.再考虑转换为计算每条边不被包含的方案数.这仅当所选点都在该边的同一侧.于是可得f(k)=C(n,k)+ΣC(n,k ...
- 【AtCoder】AGC005F - Many Easy Problems
题解 我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可 一条边的贡献是\(\binom{n}{k} - \binom{a}{k ...
- 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花
题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...
- Codeforces 913D - Too Easy Problems
913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- AtcoderGrandContest 005 F. Many Easy Problems
$ >AtcoderGrandContest \space 005 F. Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...
- 【AGC005F】Many Easy Problems (NTT)
Description 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...
- 【AGC005F】Many Easy Problems FFT 容斥原理
题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...
随机推荐
- 【LuoguP3264】[JLOI2015] 管道连接(斯坦那树)
题目链接 题目描述 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰.该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m 对情报站 ui;vi 和费用 wi,表示情报站 u ...
- Arduino通讯串口
串口是Arduino与其它设备进行通信的接口 所有的Arduino控制板有至少一个串口(又称作为UART或USART).它通过0(RX)和1(TX)数字引脚经过串口转换芯片连接计算机USB端口与计算机 ...
- Vue刷新token,判断token是否过期
1.判断token是否过期,前端请求后,后台会返回一个状态给你.根据状态判断是否过期,刷新token 2.是否每次请求后端都会返回新的token给你.或者后端给你定义了一个刷新token的方法,那此时 ...
- Spring Batch Hello World
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11995146.html Project Directory Maven Dependency < ...
- html的a链接的href怎样才另起一个页面,一个页面调到另一个html页面
在后面加上target ="_blank",就可以,正如: <ul class="nav navbar-nav navbar-right" style=& ...
- mybatis中延迟加载Lazy策略
延迟加载: lazy策略原理:只有在使用查询sql返回的数据是才真正发出sql语句到数据库,否则不发出(主要用在多表的联合查询) 1.一对一延迟加载: 假设数据库中有person表和card表:其中p ...
- Python_019(六星级别之反射方法)
1.反射 1)神赐给你的内置函数 : a: getattr(命名空间,'函数名') == 命名空间.属性名; 这里的命名空间指的是对象或者类; b: getattr四个应用场景: 1)类名.名字 &l ...
- 【CF1247F】Tree Factory(构造)
题意:给定一棵n个点的树,要求将一条可以随意标号的链通过若干次操作变成这棵树 一次操作是指若v不为根且v的父亲不为根,则将v以及v的子树移到v的父亲的父亲上 要求给出标号方案,操作次数以及方案 n&l ...
- 一本通例题-生日蛋糕——题解<超强深搜剪枝,从无限到有限>
题目传送 显然是道深搜题.由于蛋糕上表面在最底层的半径确认后就确认了,所以搜索时的面积着重看侧面积. 找维度/搜索面临状态/对象:当前体积v,当前外表面面积s,各层的半径r[],各层的高度h[]. 可 ...
- Spring Cloud教程(九)应用程序上下文服务
Spring Boot对于如何使用Spring构建应用程序有一个看法:例如它具有常规配置文件的常规位置,以及用于常见管理和监视任务的端点.Spring Cloud建立在此之上,并添加了一些可能系统中所 ...