#2.16 合并 merge-join
import numpy as np
import pandas as pd
df1 = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3']})
df2 = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3']})
df3 = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'key2':['k0','k1','k0','k1'],
'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3']})
df4 = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'key2':['k0','k1','k0','k3'],
'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3']})
print(df1)
print(df2)
print(pd.merge(df1,df2,on='key1'))
print('------')
#on 参考键 print(df3)
print(df4)
print(pd.merge(df3,df4,on=['key1','key2']))#2个键值同时去匹配

结果:

    A   B key1
0 A0 B0 k0
1 A1 B1 k1
2 A2 B2 k2
3 A3 B3 k3
C D key1
0 C0 D0 k0
1 C1 D1 k1
2 C2 D2 k2
3 C3 D3 k3
A B key1 C D
0 A0 B0 k0 C0 D0
1 A1 B1 k1 C1 D1
2 A2 B2 k2 C2 D2
3 A3 B3 k3 C3 D3
------
A B key1 key2
0 A0 B0 k0 k0
1 A1 B1 k1 k1
2 A2 B2 k2 k0
3 A3 B3 k3 k1
C D key1 key2
0 C0 D0 k0 k0
1 C1 D1 k1 k1
2 C2 D2 k2 k0
3 C3 D3 k3 k3
A B key1 key2 C D
0 A0 B0 k0 k0 C0 D0
1 A1 B1 k1 k1 C1 D1
2 A2 B2 k2 k0 C2 D2
#参数how 合并方式
print(pd.merge(df3,df4,on=['key1','key2'],how='inner'))#取交集
print(pd.merge(df3,df4,on=['key1','key2'],how='outer'))#并集 数据缺失用Nan
print(pd.merge(df3,df4,on=['key1','key2'],how='left'))#按照df3为参考,数据缺失用Nan
print(pd.merge(df3,df4,on=['key1','key2'],how='right'))#按照df4为参考,数据缺失用Nan

结果:

    A   B key1 key2   C   D
0 A0 B0 k0 k0 C0 D0
1 A1 B1 k1 k1 C1 D1
2 A2 B2 k2 k0 C2 D2
A B key1 key2 C D
0 A0 B0 k0 k0 C0 D0
1 A1 B1 k1 k1 C1 D1
2 A2 B2 k2 k0 C2 D2
3 A3 B3 k3 k1 NaN NaN
4 NaN NaN k3 k3 C3 D3
A B key1 key2 C D
0 A0 B0 k0 k0 C0 D0
1 A1 B1 k1 k1 C1 D1
2 A2 B2 k2 k0 C2 D2
3 A3 B3 k3 k1 NaN NaN
A B key1 key2 C D
0 A0 B0 k0 k0 C0 D0
1 A1 B1 k1 k1 C1 D1
2 A2 B2 k2 k0 C2 D2
3 NaN NaN k3 k3 C3 D3
#参数left_on right_on left_index right_index -》当键不在一个列时,可以单独设置左键或右键
df1 = pd.DataFrame({'key':list('abdcjeu'),
'data1':range(7)})
df2 = pd.DataFrame({'rkey':list('abc'),
'data2':range(3)})
print(df1,'\n',df2)
print(pd.merge(df1,df2,left_on = 'key',right_on = 'rkey'))#当2个dataframe中的主键名称不一致时,用left_on 和right_on 去指定键值

结果:

   data1 key
0 0 a
1 1 b
2 2 d
3 3 c
4 4 j
5 5 e
6 6 u
data2 rkey
0 0 a
1 1 b
2 2 c
data1 key data2 rkey
0 0 a 0 a
1 1 b 1 b
2 3 c 2 c
df1 = pd.DataFrame({'key':list('abdcjeu'),
'data1':range(7)})
df2 = pd.DataFrame({'data2':range(100,105)},index = list('abcde'))
print(df1)
print(df2)
print(pd.merge(df1,df2,left_on='key',right_index=True,sort=True))#以index为键 作为左表 key对应的键值对 sort是否按照key排序
   data1 key
0 0 a
1 1 b
2 2 d
3 3 c
4 4 j
5 5 e
6 6 u
data2
a 100
b 101
c 102
d 103
e 104
data1 key data2
0 0 a 100
1 1 b 101
3 3 c 102
2 2 d 103
5 5 e 104
#pd.join 直接通过索引链接
left = pd.DataFrame({'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3']},
index = ['k0','k1','k2','k4'])
right = pd.DataFrame({'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3']},
index = ['k0','k1','k2','k3'])
print(left)
print(right)
print(left.join(right))
print(left.join(right,how='outer'))#拓展

结果:

     A   B
k0 A0 B0
k1 A1 B1
k2 A2 B2
k4 A3 B3
C D
k0 C0 D0
k1 C1 D1
k2 C2 D2
k3 C3 D3
A B C D
k0 A0 B0 C0 D0
k1 A1 B1 C1 D1
k2 A2 B2 C2 D2
k4 A3 B3 NaN NaN
A B C D
k0 A0 B0 C0 D0
k1 A1 B1 C1 D1
k2 A2 B2 C2 D2
k3 NaN NaN C3 D3
k4 A3 B3 NaN NaN
df1 = pd.DataFrame({'key':list('bbacaab'),
'data1':range(7)})
df2 = pd.DataFrame({'key':list('abc'),
'data2':range(3)})
print(pd.merge(df1,df2,left_index=True,right_index=True,suffixes=('_1','_2')))
print(df1.join(df2['data2']))
print('------')#当df1 df2的key相同时,使用suffixes 两个相同的key 成为 key_1 key_2

结果:

   data1 key_1  data2 key_2
0 0 b 0 a
1 1 b 1 b
2 2 a 2 c
data1 key data2
0 0 b 0.0
1 1 b 1.0
2 2 a 2.0
3 3 c NaN
4 4 a NaN
5 5 a NaN
6 6 b NaN
left = pd.DataFrame({'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3'],
'key':['k0','k1','k0','k3']})
right = pd.DataFrame({'C':['C0','C1'],
'D':['D0','D1']},
index = ['k0','k1'])
print(left)
print(right)
print(left.join(right,on='key'))#用left的key和 right的index 合并

结果:

    A   B key
0 A0 B0 k0
1 A1 B1 k1
2 A2 B2 k0
3 A3 B3 k3
C D
k0 C0 D0
k1 C1 D1
A B key C D
0 A0 B0 k0 C0 D0
1 A1 B1 k1 C1 D1
2 A2 B2 k0 C0 D0
3 A3 B3 k3 NaN NaN

2018.03.27 python pandas merge join 使用的更多相关文章

  1. Python Pandas Merge, join and concatenate

    Pandas提供了基于 series, DataFrame 和panel对象集合的连接/合并操作. Concatenating objects 先来看例子: from pandas import Se ...

  2. 【VSCode】Windows下VSCode编译调试c/c++【更新 2018.03.27】

    --------– 2018.03.27 更新--------- 便携版已更新,点此获取便携版 已知BUG:中文目录无法正常调试 用于cpptools 0.15.0插件的配置文件更新 新的launch ...

  3. Pandas -- Merge,join and concatenate

    Merge, join, and concatenate pandas provides various facilities for easily combining together Series ...

  4. 2018.03.27 pandas concat 和 combin_first使用

    # 连接和修补concat.combine_first 沿轴的堆叠连接 # 连接concatimport pandas as pdimport numpy as np s1 = pd.Series([ ...

  5. 2018.03.27 pandas duplicated 和 replace 使用

    #.duplicated / .replace import numpy as np import pandas as pd s = pd.Series([1,1,1,1,1,2,3,3,3,4,4, ...

  6. 2018/03/27 每日一个Linux命令 之 cron

    Cron 用于配置定时任务. -- 环境为 Ubuntu16-04 -- 先说说怎么配置一个简单的定时任务.直观的可以看到效果. 之前在网上查找资料,对Shell编程不熟悉的实在是很头疼,走了不少弯路 ...

  7. Python pandas merge不能根据列名合并两个数据框(Key Error)?

    目录 折腾 解决方法 折腾 数据分析用惯了R,感觉pandas用起来就有点反人类了.今天用python的pandas处理数据时两个数据框硬是合并不起来. 我有两个数据框,列名是未知的,只能知道索引,以 ...

  8. 2018.4.27 python使用过的第三方库

    Flask flask-login flask-sqlalchemy flask-mail psutil lvm2py oss2 python-ldap pyudev pyOpenSSL urllib ...

  9. 网易2018.03.27算法岗,三道编程题100%样例AC题解

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/8660814.html特别不喜欢那些随便转载别人的原创文章又不给 ...

随机推荐

  1. Linux系统性能测试工具(九)——文件系统的读写性能测试工具之iozone

    本文介绍关于Linux系统(适用于centos/ubuntu等)的文件系统的读写性能测试工具-iozone: 参考链接: https://www.cnblogs.com/Dev0ps/p/788938 ...

  2. centos7下通过LVS的DR模式实现负载均衡访问

    一.两台服务器作为real server ,一台作为director director:172.28.18.69 vip:172.28.18.70 real server1:172.28.18.71 ...

  3. 牛客练习赛47 A DongDong破密码 (异或性质,递推)

    链接:https://ac.nowcoder.com/acm/contest/904/A 来源:牛客网 DongDong破密码 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1310 ...

  4. robotframework ride报错 Keyword 'BuiltIn.Log' expected 1 to 5 arguments, got 12.

    错误原因,else和else if使用了小写,必须使用大写才能识别到.

  5. WebDriver+PhantomJs爬虫运用(Java)

    需要的添加的jar包及工具:我这里使用maven来构建项目,添加依赖如下: <dependency> <groupId>org.seleniumhq.selenium</ ...

  6. 十一、S3C2440 裸机 — GPIO

    11.1 GPIO 介绍 11.1.1 GPIO 管脚 GPIO 即是输入输出端口,S3C2440A 包含了 130 个多功能输入/输出口引脚并且它们为如下显示的八个端口: 端口 A(GPA):25 ...

  7. 深入理解JAVA虚拟机 高效并发

    处理器和缓存 由于计算机的存储设备与处理器的运算速度之间有着几个数量级的差距,所以现代计算机系统都不得不加入一层读写速度尽可能接近处理器运算速度的高速缓存来作为内存与处理之间的缓冲:将运算需要使用的数 ...

  8. shell之文本过滤(awk)

    shell之文本过滤(awk) 分类: linux shell脚本学习2012-09-19 15:53 1241人阅读 评论(0) 收藏 举报 shell正则表达式脚本任务语言 如果要格式化报文或从一 ...

  9. python内存相关以及深浅拷贝讲解

    3.9 内存相关 3.9.1 id,查看内存地址 >>> v1 = [11,22,33] >>> v2 = [11,22,33] >>> prin ...

  10. 集合综合练习<四>

    package com.JiHeTotal; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io. ...