poj1386有向图判断是否存在欧拉回路或者欧拉路
有向图的图联通是指基图联通,也就是把有向图的边改成无向图然后看是否连通。判断联通可用dfs或者并查集。
题意就是给你n个由小写字母构成的字符串,问你能不能将这n个字符串连接起来,B能接在A后面的条件是A的最后一个字母==B的第一个字母。
然后就是将26个小写字母看成顶点集,对于一个字符串,其首字母向尾字母连一条单向边构图。
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int in[N],out[N],ans;
char s[N*];
vector<int>G[N];
bool vis[N];
void dfs(int u)
{
for(int i=; i<(int)G[u].size(); ++i)
{
if(vis[G[u][i]])
{
++ans;
vis[G[u][i]]=;
dfs(G[u][i]);
}
}
}
int main()
{
int T,n;
for(scanf("%d",&T); T--;)
{
scanf("%d",&n);
memset(vis,,sizeof(vis));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
for(int i=; i<; ++i) G[i].clear();
int cont=ans=;
while(n--)
{
scanf("%s",s);
int st=s[],ed=s[strlen(s)-];
st-='a',ed-='a';
G[st].push_back(ed);
G[ed].push_back(st);
++in[ed];
++out[st];
if(!vis[st]) ++cont;vis[st]=;
if(!vis[ed]) ++cont;vis[ed]=;
}
for(n=; n<; ++n) if(!G[n].empty()) break;
vis[n]=,++ans;
dfs(n);
if(ans!=cont)
{
puts("The door cannot be opened.");
continue;
}
bool ok=,k1=,k2=;
for(int i=; i<; ++i)
{
if(in[i]==out[i]) continue;
else if(in[i]-out[i]==&&!k1) k1=;
else if(out[i]-in[i]==&&!k2) k2=;
else
{
ok=;
break;
}
}
if(ok) puts("Ordering is possible.");
else puts("The door cannot be opened.");
}
}
poj1386有向图判断是否存在欧拉回路或者欧拉路的更多相关文章
- 欧拉路&&欧拉回路 概念及其练习
欧拉路: 如果给定无孤立结点图G,若存在一条路,经过图中每边一次且仅一次,这条路称为欧拉路: 如果给定无孤立结点图G,若存在一条回路,经过图中每边一次且仅一次,那么该回路称为欧拉回路. 存在欧拉回路的 ...
- poj 1386 Play on Words(有向图欧拉路+并查集)
题目链接:http://poj.org/problem?id=1386 思路分析:该问题要求判断单词是否能连接成一条直线,转换为图论问题:将单词的首字母和尾字母看做一个点,每个单词描述了一条从首字母指 ...
- Play on Words(有向图欧拉路)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8571 Accepted: 2997 Description Some ...
- POJ1386Play on Words[有向图欧拉路]
Play on Words Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11846 Accepted: 4050 De ...
- 星际旅行(欧拉路,欧拉回路)(20190718 NOIP模拟测试5)
瞎搞了一个ans+=du*(du-1)/2 wa20分,好桑心(话外音:居然还有二十分,出题人太周到了) 还是判欧拉路 题解没太仔细想,感觉还是kx的思路明白 具体就是:因为每条边要走两遍,可以把一条 ...
- DFS应用——遍历有向图+判断有向图是否有圈
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 "DFS应用--遍历有向图+判断有向图是否有圈" 的idea 并用源代码加以实现 : ...
- HDU 5883 The Best Path (欧拉路或者欧拉回路)
题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...
- POJ 2513 trie树+并查集判断无向图的欧拉路
生无可恋 查RE查了一个多小时.. 原因是我N define的是250500 应该是500500!!!!!!!!! 身败名裂,已无颜面对众人.. 吐槽完了 我们来说思路... 思路: 判有向图能否形成 ...
- 欧拉路&&欧拉回路
T1是欧拉路板子,但我不会,直接爆炸.. 这玩意就是个dfs,但我以前一直以为欧拉路只能$O(nm)$求 今天才知道可以$O(n+m)$ 欧拉路判定: 无向:起点终点为奇度点,其余偶度 有向:起点终点 ...
随机推荐
- Apache Commons Lang » 3.10使用简介
============================================================= 行文介绍: 1.诞生背景 2.引入方案 3.简单介绍 4 .详情介绍 文档: ...
- 【手把手教你】win10 虚拟机 VMware Workstation Pro 15下安装Ubuntu 19.04
虚拟机 VMware Workstation Pro 15.5.0 及永久激活密钥 https://www.cnblogs.com/zero-vic/p/11584437.html Ubuntu19. ...
- 标准库模块time,datetime
在Python中,通常有这几种方式来表示时间: 1)时间戳 2)格式化的时间字符串 3)元组(struct_time)共九个元素. 由于Python的time模块实现主要调用C库,所以各个平台可能有所 ...
- 通过例题进一步学习DP
1.以上篇文章数塔为例 https://blog.csdn.net/weixin_43627118/article/details/88701586 上一章用的是递归的做法,这次我们采用递推的做法. ...
- python selenium(用例断言)
1.if ...else ...判断进行断言 from time import * from selenium import webdriver "): driver = webdriver ...
- Jenkins 构建 Jmeter 项目之源代码管理(SVN)
1.查看项目创建中是否又 svn 插件,没有的话下载插件 subversion 2.配置 svn 源代码管理,如下图(testcases 目录下包含 build.xml 和脚本文件) 3.查看 Jen ...
- Jmeter 数据库测试参数化
1.JDBC Request 参数化 方法一.Jmeter 参数化,在 sql query 中使用变量 Jmeter 参数化,使用 csv 参数化 sql query 中使用 ${变量名} 引用 方法 ...
- IIS搭建网站(二)
win+IIS+ASP+ACCESS第二种搭建方式 安装 控制面板”,依次选“添加/删除程序”, 添加/删除Windows组件 在应用程序服务器前打钩.点击详细信息 将“Internet信息服务(II ...
- Spring Boot Actuator H2 RCE复现
0x00 前言 Spring Boot框架是最流行的基于Java的微服务框架之一,可帮助开发人员快速轻松地部署Java应用程序,加快开发过程.当Spring Boot Actuator配置不当可能造成 ...
- dbcp数据源连接池
一.数据源连接池 我们之前利用jdbc连接数据库,每次都要创建连接对象,销毁连接对象,如果并发访问量比较大,这样肯定比较辣 浪费数据库的效率,我们可以像之前mybatis中缓存查询到的数据一样,可以把 ...