Pytorch 四种边界填充方式(Padding)
1. 选用卷积之前填充(强烈建议)
小生非常推荐大家不再使用卷积所带的填充方式,虽然那种方式简单,但缺陷太多。① 不能根据自己的需要来决定上与下填充不等的边界,左右填充不等的边界;② 边界填充零容易出现伪影的情况,对实验效果影响比较大。将卷积中的Padding方式换为卷积前Padding效果会更佳,以下列了四种填充方式(零填充,常数填充,镜像填充,复制填充)。
小生就不赘言了,客官请下观~~
2. 边界填充之零填充
零填充是常数填充的特例,这种填充方式和卷积中的填充的类似,都是填充零元素,不过这个比卷积填充更灵活,我们可以根据自己的需要再上下左右分别填充相应的0元素。
2.1 Code
import torch
import torch.nn as nn # ================== 零填充 ==================
def conv_ZeroPad2d():
# 定义一个四维数据:(batchSize, channel, height, width)
data = torch.tensor([[[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]]]).float()
print("data_shape: ", data.shape)
print("data: ", data)
# 零填充,在边界填充n个0,分别为:左、右、上、下
ZeroPad = nn.ZeroPad2d(padding=(1, 2, 1, 2))
data1 = ZeroPad(data)
print("data1_shape: ", data1.shape)
print("data1: ", data1) if __name__ == '__main__':
conv_ZeroPad2d()
2.2 结果显示
可以看到,分别在左边填充1列0元素,右边填充2列0元素,上边填充1列0元素,下边填充2列0元素。
3. 边界填充之常数填充
常数填充方式, 可以根据自己的需要在上下左右分别填充指定的元素。
3.1 Code
import torch # ================== 常量填充 ==================
def conv_ConstantPad2d():
# 定义一个四维数据:(batchSize, channel, height, width)
data = torch.tensor([[[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]]]).float()
print("data_shape: ", data.shape)
print("data: ", data)
# 用给定的纸填充,0填充是常亮填充的特列,分别为:左、右、上、下
ConstantPad = nn.ConstantPad2d(padding=(1, 2, 1, 2), value=10)
data1 = ConstantPad(data)
print("data1_shape: ", data1.shape)
print("data1: ", data1) if __name__ == '__main__':
conv_ConstantPad2d()
3.2 结果显示
可以看到,分别在左边填充1列10元素,右边填充2列10元素,上边填充1列10元素,下边填充2列10元素。
4. 边界填充之镜像填充
镜像填充方式是根据对称性来填充的。
4.1 Code
import torch # ================== 镜像填充 ==================
def conv_ReflectionPad2d():
# 定义一个四维数据:(batchSize, channel, height, width)
data = torch.tensor([[[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]]]).float()
print("data_shape: ", data.shape)
print("data: ", data)
# 复制边界n次,分别为:左、右、上、下
ReflectionPad = nn.ReflectionPad2d(padding=(1, 2, 1, 2))
data1 = ReflectionPad(data)
print("data1_shape: ", data1.shape)
print("data1: ", data1) if __name__ == '__main__':
conv_ReflectionPad2d()
4.2 结果显示
5. 边界填充之复制填充
复制填充方式,小生非常推荐。复制填充是复制最外边界的元素来填充,这样填充的元素与边界元素相近,对实验结果的影响会降到最小。
5.1 Code
import torch # ================== 重复填充 ==================
def conv_ReplicationPad2d():
# 定义一个四维数据:(batchSize, channel, height, width)
data = torch.tensor([[[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]]]).float()
print("data_shape: ", data.shape)
print("data: ", data)
# 用对称位置的像素来填充,分别为:左、右、上、下
ReplicationPad = nn.ReplicationPad2d(padding=(1, 2, 1, 2))
data1 = ReplicationPad(data)
print("data1_shape: ", data1.shape)
print("data1: ", data1) if __name__ == '__main__':
conv_ReplicationPad2d()
5.2 结果显示
可以看到,填充的元素与最外边界的元素相同。
6. 总结
努力去爱周围的每一个人,付出,不一定有收获,但是不付出就一定没有收获! 给街头卖艺的人零钱,不和深夜还在摆摊的小贩讨价还价。愿我的博客对你有所帮助(*^▽^*)(*^▽^*)!
如果客官喜欢小生的园子,记得关注小生哟,小生会持续更新(#^.^#)(#^.^#)!
Pytorch 四种边界填充方式(Padding)的更多相关文章
- ASP.NET MVC下的四种验证编程方式[续篇]
在<ASP.NET MVC下的四种验证编程方式>一文中我们介绍了ASP.NET MVC支持的四种服务端验证的编程方式("手工验证"."标注Validation ...
- ASP.NET MVC下的四种验证编程方式
ASP.NET MVC采用Model绑定为目标Action生成了相应的参数列表,但是在真正执行目标Action方法之前,还需要对绑定的参数实施验证以确保其有效性,我们将针对参数的验证成为Model绑定 ...
- thinkphp四种url访问方式详解
本文实例分析了thinkphp的四种url访问方式.分享给大家供大家参考.具体分析如下: 一.什么是MVC thinkphp的MVC模式非常灵活,即使只有三个中和一个也可以运行. M -Model 编 ...
- ASP.NET MVC下的四种验证编程方式[续篇]【转】
在<ASP.NET MVC下的四种验证编程方式> 一文中我们介绍了ASP.NET MVC支持的四种服务端验证的编程方式(“手工验证”.“标注ValidationAttribute特性”.“ ...
- ASP.NET MVC下的四种验证编程方式【转】
ASP.NET MVC采用Model绑定为目标Action生成了相应的参数列表,但是在真正执行目标Action方法之前,还需要对绑定的参数实施验证以确保其有效 性,我们将针对参数的验证成为Model绑 ...
- thinkPHP四种URL访问方式(二)
原文:thinkPHP四种URL访问方式(二) 四.url的4种访问方式 1.PATHINFO 模式 -- (重点) http://域名/项目名/入口文件/模块名/方法名/键1/值1/键2/ ...
- python接口自动化(十)--post请求四种传送正文方式(详解)
简介 post请求我在python接口自动化(八)--发送post请求的接口(详解)已经讲过一部分了,主要是发送一些较长的数据,还有就是数据比较安全等.我们要知道post请求四种传送正文方式首先需要先 ...
- 快速理解VirtualBox的四种网络连接方式
VirtualBox中有4中网络连接方式: NAT Bridged Adapter Internal Host-only Adapter VMWare中有三种,其实他跟VMWare 的网络连接方式都是 ...
- python3+requests:post请求四种传送正文方式(详解)
前言:post请求我在python接口自动化2-发送post请求详解(二)已经讲过一部分了,主要是发送一些较长的数据,还有就是数据比较安全等,可以参考Get,Post请求方式经典详解进行学习一下. 我 ...
随机推荐
- 选择IT行业的自我心得,希望能帮助到各位!(四)
俗话说,只有尝过人生的苦,吃过人生的亏,你才能吃一见长一智,人生教会了我们该如何去吃亏,该如何做人,该如何和人打交道,生活会让我们低下无数的头,就看你怎么去面对这些曲折该如何告诉自己不能就被这样打到, ...
- SVG 案例:动态去创建分支节点,当鼠标经过某个节点时,分支线会高亮
css: <style> #div1{ width:780px; height:400px; background:#fff; margin:20px auto; overflow:hid ...
- Some Modern Softwares' drawbacks: User experience 12/29/2015
In the nowadays, there are many APP in the PC or smart Phone. Some of them can't meet the customers' ...
- E. 数字串
给你一个长度为 n 的数字串,找出其中位数不超过15位的不包含前导0和后导0的数 x ,使得 x+f(x) 是一个回文数,其中 f(x) 表示将 x 反转过来的数. 输入格式 多组输入,处理到文件结束 ...
- 数据类型、运算符、Scanner的使用
一.常见的基本数据类型 数值型 byte(最小,2字节) short(4字节) int (默认 8字节) long(16字节) 浮点型 f ...
- Mac os Pycharm 中使用Stanza进行实体识别(自然语言处理nlp)
stanza 是斯坦福开源Python版nlp库,对自然语言处理有好大的提升,具体好在哪里,官网里面都有介绍,这里就不翻译了.下面放上对应的官网和仓库地址. stanza 官网地址:点击我进入 sta ...
- 使用User Agent和代理IP隐藏身份
一.为何要设置User Agent 有一些网站不喜欢被爬虫程序访问,所以会检测连接对象,如果是爬虫程序,也就是非人点击访问,它就会不让你继续访问,所以为了要让程序可以正常运行,需要隐藏自己的爬虫程序的 ...
- 微软的 Sysinternals 系统管理工具包,例如可找出自动启动的流氓软件
作者:Kenny链接:https://www.zhihu.com/question/52157612/answer/153886419来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- 理解分布式一致性:Paxos协议之Generalized Paxos & Byzantine Paxos
理解分布式一致性:Paxos协议之Generalized Paxos & Byzantine Paxos Generalized Paxos Byzantine Paxos Byzantine ...
- 在Spring Boot使用H2内存数据库
文章目录 添加依赖配置 数据库配置 添加初始数据 访问H2数据库 在Spring Boot使用H2内存数据库 在之前的文章中我们有提到在Spring Boot中使用H2内存数据库方便开发和测试.本文我 ...