java实现第七届蓝桥杯取球博弈
题目9、取球博弈
取球博弈
两个人玩取球的游戏。
一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目。
如果无法继续取球,则游戏结束。
此时,持有奇数个球的一方获胜。
如果两人都是奇数,则为平局。
假设双方都采用最聪明的取法,
第一个取球的人一定能赢吗?
试编程解决这个问题。
输入格式:
第一行3个正整数n1 n2 n3,空格分开,表示每次可取的数目 (0<n1,n2,n3<100)
第二行5个正整数x1 x2 ... x5,空格分开,表示5局的初始球数(0<xi<1000)
输出格式:
一行5个字符,空格分开。分别表示每局先取球的人能否获胜。
能获胜则输出+,
次之,如有办法逼平对手,输出0,
无论如何都会输,则输出-
例如,输入:
1 2 3
1 2 3 4 5
程序应该输出:
+ 0 + 0 -
再例如,输入:
1 4 5
10 11 12 13 15
程序应该输出:
0 - 0 + +
再例如,输入:
2 3 5
7 8 9 10 11
程序应该输出:
+ 0 0 0 0
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
本题是拈游戏的一个拓展,考查减治法和动态规划法思想的运用,下面代码,对于题中所给三组数据均可以通过,但是对于平局(均为奇数或均为偶数)细节处理问题上有待证明,感觉自己处理的不够严谨。下面代码仅供参考哦~
import java.util.Scanner;
public class Main {
public static int[] value = new int[1000];
public static int[] getN = new int[3];
public static int[] init = new int[5];
public static char[] result = {'-','0','0','+'};
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
for(int i = 0;i < 3;i++)
getN[i] = in.nextInt();
for(int i = 0;i < 5;i++)
init[i] = in.nextInt();
int minN = Math.min(getN[0], Math.min(getN[1], getN[2]));
if(minN % 2 == 1) //此处关于平局,两者是均为奇数,还是均为偶数问题,这里处理原因,是我自己猜想
value[0] = 1; //代表平局,两者默认均为奇数个
else
value[0] = 2; //代表平局,两者默认均为偶数个
for(int i = 1;i < minN;i++)
value[i] = 2; //0代表负,1和2代表平局,3代表胜
for(int i = minN;i < 1000;i++) {
int temp = 0; //初始化,当前i个球,先取者必输
for(int j = 0;j < 3;j++) {
if(i - getN[j] < 0)
continue;
if(i - getN[j] == 0 && getN[j] % 2 == 1)
temp = 3;
if(value[i - getN[j]] == 0) { //表示i - getN[j]个球先取时,必输
if(getN[j] % 2 == 0)
temp = 3;
//此时最终结果为两人取的球均为偶数个,但是若temp取三个数中另外一个数时
//,是必赢结果,则舍弃这个平局结果
else
temp = 2 > temp ? 2 : temp;
}
if(value[i - getN[j]] == 1) { //表示i - getN[j]个球先取时,两人取球均为奇数个
if(getN[j] % 2 == 0)
temp = 1 > temp ? 1 : temp; //此处做比较同上
}
if(value[i - getN[j]] == 2) {//表示i - getN[j]个球先取时,两人取球均为偶数个
if(getN[j] % 2 == 1)
temp = 3; //此种情况出现,必赢,不必做比较判断
else
temp = 2 > temp ? 2 : temp; //此处比较同上,排除必输情况
}
if(value[i - getN[j]] == 3) {//表示i - getN[j]个球先取时,必赢
if(getN[j] % 2 == 1)
temp = 1 > temp ? 1 : temp;
}
}
value[i] = temp; //当前i个球,先取者最终输赢结果
}
//打印题意最终结果
for(int i = 0;i < 5;i++)
System.out.print(result[value[init[i]]]+" ");
}
}
java实现第七届蓝桥杯取球博弈的更多相关文章
- java算法 第七届 蓝桥杯B组(题+答案) 9.取球博弈
9.取球博弈 (程序设计) 两个人玩取球的游戏.一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目.如果无法继续取球,则游戏结束.此时,持有奇数个球的一方获胜.如果两人都是 ...
- 2016蓝桥杯"取球博弈"问题
较难,网上有能得出正确结果的代码,但是读了一下,像是拼凑出的结果,逻辑不通,代码和注释不符 参考网上代码写了一版,结构相对清晰,注释比较详细 题目很长: 两个人玩取球的游戏.一共有N个球,每人轮流取球 ...
- java实现第七届蓝桥杯冰雹数
题目8.冰雹数 题目描述 任意给定一个正整数N, 如果是偶数,执行: N / 2 如果是奇数,执行: N * 3 + 1 生成的新的数字再执行同样的动作,循环往复. 通过观察发现,这个数字会一会儿上升 ...
- java实现第七届蓝桥杯七星填数
七星填数 如图[图1.png]所示. 在七角星的14个节点上填入1~14 的数字,不重复,不遗漏. 要求每条直线上的四个数字之和必须相等. 图中已经给出了3个数字. 请计算其它位置要填充的数字,答案唯 ...
- java算法 第七届 蓝桥杯B组(题+答案) 10.压缩变换
10.压缩变换 (程序设计) 小明最近在研究压缩算法.他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比.然而,要使数值很小是一个挑战. 最近,小明需要压缩一些正整数的序列,这些 ...
- Java实现第七届蓝桥杯国赛 赢球票
标题:赢球票 某机构举办球票大奖赛.获奖选手有机会赢得若干张球票. 主持人拿出 N 张卡片(上面写着 1~N 的数字),打乱顺序,排成一个圆圈. 你可以从任意一张卡片开始顺时针数数: 1,2,3- 如 ...
- java实现第七届蓝桥杯四平方和
四平方和 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^ ...
- java实现第七届蓝桥杯平方圈怪
平方圈怪 题目描述 如果把一个正整数的每一位都平方后再求和,得到一个新的正整数. 对新产生的正整数再做同样的处理. 如此一来,你会发现,不管开始取的是什么数字, 最终如果不是落入1,就是落入同一个循环 ...
- java实现第七届蓝桥杯有奖竞猜
有奖竞猜 题目描述 小明很喜欢猜谜语. 最近,他被邀请参加了X星球的猜谜活动. 每位选手开始的时候都被发给777个电子币. 规则是:猜对了,手里的电子币数目翻倍, 猜错了,扣除555个电子币, 扣完为 ...
随机推荐
- C++17结构化绑定
动机 std::map<K, V>的insert方法返回std::pair<iterator, bool>,两个元素分别是指向所插入键值对的迭代器与指示是否新插入元素的布尔值, ...
- .Net Core3.0 WebApi 项目框架搭建:目录
一.目录 .Net Core3.0 WebApi 项目框架搭建 一:实现简单的Resful Api .Net Core3.0 WebApi 项目框架搭建 二:API 文档神器 Swagger .Net ...
- vue组件试错
[Vue warn]: Property or method "child1" is not defined on the instance but referenced duri ...
- 【python代码】 最大流问题+最小花费问题+python(ortool库)实现
目录 基本概念 图 邻接矩阵 最大流问题 python解决最大流问题 python解决最大流最小费用问题 基本概念 图 定义: 图G(V,E)是指一个二元组(V(G),E(G)),其中: V(G)={ ...
- PART(Persistent Adaptive Radix Tree)的Java实现源码剖析
论文地址 Adaptive Radix Tree: https://db.in.tum.de/~leis/papers/ART.pdf Persistent Adaptive Radix Tree: ...
- python3.x 基础四:生成器与迭代器
1.预先存值到内存,调用之前已经占用了内存,不管用与不用,都占用内存 >>> a=[1,2,3,4,5] >>> type(a) <class 'list'& ...
- 存储系列之 硬盘接口与SCSI总线协议
本文主要介绍硬盘的接口.总线和协议,SSD与SATA硬盘一般是兼容的,NVmeSSD除外. 一.磁盘控制器 上一章介绍了存储系统的主要介质硬盘,而硬盘的读写通过磁头臂,磁头臂是由磁盘驱动器来控制的.磁 ...
- 处理TableVIew SectionHeader悬停问题
1,plain类型的tableview 才会悬停 grouped类型不会悬停 2,通过改变contentInset达到部分悬停遮罩的处理,对所有的Sectionheader都有效,不可以单独处理某 ...
- iOS 的尾调用优化原理
背景: 今天聊代码规范的问题的时候说了一下尾调用的问题. 一:概念: 什么是尾调用? 尾调用(Tail Call):某个函数的最后一步仅仅只是调用了一个函数(可以是自身,可以是另一个函数). 注意 “ ...
- Vue 百度地图显示规划路线
Vue 百度地图显示规划路线 1.首选引入相应的文件(建议单页面引入)(如有问题找上一篇博客园) 2.区别就是需要多引入几根不同的文件 import { BaiduMap, BmScale, BmGe ...