[CodeForces 300C Beautiful Numbers]组合计数
题意:十进制的每一位仅由a和b组成的数是“X数”,求长度为n,各数位上的数的和是X数的X数的个数
思路:由于总的位数为n,每一位只能是a或b,令a有p个,则b有(n-p)个,如果 a*p+b*(n-p) 为X数,则这种情况的答案就是C(n,p),将所有情况累加起来即可。
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull; //#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
//#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=;i<a.size();i++)a[i]=b[i];} const double PI = acos(-1.0);
const int INF = 1e9 + ;
const double EPS = 1e-8; /* -------------------------------------------------------------------------------- */ template<int mod>
struct ModInt {
const static int MD = mod;
int x;
ModInt(ll x = ): x(x % MD) {}
int get() { return x; } ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); }
ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); }
ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); }
ModInt operator / (const ModInt &that) const { return *this * that.inverse(); } ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; }
ModInt operator -= (const ModInt &that) { x -= that.x; if (x < ) x += MD; }
ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; }
ModInt operator /= (const ModInt &that) { *this = *this / that; } ModInt inverse() const {
int a = x, b = MD, u = , v = ;
while(b) {
int t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if(u < ) u += MD;
return u;
} };
typedef ModInt<> mint; const int maxn = 1e6 + ;
bool yes[ * maxn];
int a, b, n;
mint fac[maxn], facinv[maxn]; void pre_init() {
fillchar(yes, );
for (int i = ; i < ( << ); i ++) {
int buf = ;
for (int j = ; j < ; j ++) {
if (( << j) & i) buf = buf * + b;
else buf = buf * + a;
yes[buf] = true;
}
yes[buf] = true;
}
fac[] = facinv[] = ;
for (int i = ; i <= n; i ++) {
fac[i] = fac[i - ] * i;
facinv[i] = facinv[i - ] / i;
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> a >> b >> n) {
pre_init();
mint ans = ;
for (int i = ; i <= n; i ++) {
if (yes[b * n + (a - b) * i]) {
ans += fac[n] * facinv[i] * facinv[n - i];
}
}
cout << ans.get() << endl;
}
return ;
}
[CodeForces 300C Beautiful Numbers]组合计数的更多相关文章
- CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- CodeForces 300C Beautiful Numbers
枚举,组合数,逆元. 枚举$a$用了$i$个,那么$b$就用了$n-i$个,这个时候和$sum=a*i+b*(n-i)$,判断$sum$是否满足条件,如果满足,那么答案加上$C(n,i)$. #inc ...
- Codeforces 300C Beautiful Numbers 【组合数】+【逆元】
<题目链接> 题目大意: 给出a和b,如果一个数每一位都是a或b,那么我们称这个数为good,在good的基础上,如果这个数的每一位之和也是good,那么这个数是excellent.求长度 ...
- CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)
传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...
- Codeforces 55D. Beautiful numbers(数位DP,离散化)
Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...
- CodeForces 55D Beautiful numbers
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- codeforces 55D - Beautiful numbers(数位DP+离散化)
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- CodeForces - 55D Beautiful numbers —— 数位DP
题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...
- CodeForces - 55D - Beautiful numbers(数位DP,离散化)
链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...
随机推荐
- shiro:集成Spring(四)
基于[加密及密码比对器(三)]项目改造 引入相关依赖环境 shiro-spring已经包含 shiro-core和shiro-web 所以这两个依赖可以删掉 <!--shiro继承spring依 ...
- Centos8安装Docker提示:package docker-ce-3:19.03.8-3.el7.x86_64 requires containerd.io >= 1.2.2-3, but none of the providers can be installed
Centos8安装Docker提示:package docker-ce-3:19.03.8-3.el7.x86_64 requires containerd.io >= 1.2.2-3, but ...
- 一、Go语言由来与关键时间线
Go语言,又称作Golang,是Google在2009年11月开源的开发语言.是一门静态强类型.编译型.并发型,并具有垃圾回收功能的编程语言. Go是罗伯特·格瑞史莫(Robert Griesemer ...
- Python之小型信息管理系统
#Author:msq #Time:2019/11/16 import re import os filename = "person.txt" def menu(): #输出菜单 ...
- ES6中对数组的扩展
hello,大家好,我又来了. 前面讲了字符串和数值的扩展,今天要讲的是:数组的扩展.不知道大家能否跟得上这个节奏,你们在阅读中对讲解有存在疑惑,记得留言提出来,要真正地理解,否则白白 ...
- 百度云BCH配置说明
百度云虚拟空间(BCH) 来源:https://www.cnblogs.com/llll/p/7930029.html 参考资料:https://cloud.baidu.com/doc/BCH/Ge ...
- thinkphp5.0 模型的应用
<?php namespace app\admin\controller; use app\common\controller\BaseController; use think\Db;//数据 ...
- [Qt] QProcess::startDetached() 避免弹窗,或者窗口一闪而过
主动宣告setProcessState(QProcess::NotRunning) 或者在堆上new一个QProcess. 出处: https://stackoverflow.com/q ...
- 获取 ProgramData 文件夹路径
]; if (SHGetFolderPathA( NULL, CSIDL_COMMON_STARTUP, NULL, , startUpDir) != S_OK) { printf("SHG ...
- Scala的存在类型
Scala的存在类型 存在类型也叫existential type,是对类型做抽象的一种方法.可以在你不知道具体类型的情况下,就断言该类型存在. 存在类型用_来表示,你可以把它看成java中的?. 下 ...