tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
    第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

    第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维

    第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4

    第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式

    第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式

tf.nn.conv2d 卷积的更多相关文章

  1. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  2. tf.nn.conv2d卷积函数之图片轮廓提取

    一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...

  3. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  4. tf入门-tf.nn.conv2d是怎样实现卷积的?

    转自:https://blog.csdn.net/mao_xiao_feng/article/details/78004522 实验环境:tensorflow版本1.2.0,python2.7 介绍 ...

  5. tf.nn.conv2d实现卷积的过程

    #coding=utf-8 import tensorflow as tf #case 2 input = tf.Variable(tf.round(10 * tf.random_normal([1, ...

  6. 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  7. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  8. tf.nn.conv2d

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...

  9. tf.nn.conv2d 参数介绍

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

随机推荐

  1. Natas6 Writeup(PHP Include)

    Natas6: 该题提供了php源码,点击查看分析,发现调用了includes/secret.inc页面,在输入一个变量secret后,如果和includes/secret.inc中 预设的secre ...

  2. Scapy编写ICMP扫描脚本

    使用Scapy模块编写ICMP扫描脚本: from scapy.all import * import optparse import threading import os def scan(ipt ...

  3. SpringCloud系列之服务注册发现(Eureka)应用篇

    @ 目录 前言 项目版本 Eureka服务端 Eureka客户端 服务访问 前言 大家好,距离上周发布的配置中心基础使用已过去差不多一周啦,趁着周末继续完善后续SpringCloud组件的集成,本次代 ...

  4. JavaScript----简介及基础语法

    ##JavaScript *概念:一门客户端脚本语言 *运行在客户端浏览器中的.每一个浏览器都有JavaScript的解析引擎. *脚本语言:不需要编译,直接就可以被浏览器解析执行. *功能: *可以 ...

  5. 洛谷 P5658 括号树 题解

    原题链接 简要题意: 求出以从每个节点到根形成的括号序列的合法对数. 算法一 观察到 \(n \leq 8\) ,所以我们可以用 纯粹的暴力 . 用 \(O(n)\) 时间得出当前节点到根的字符串. ...

  6. IDEA上传图片到tomcat服务器上

    前端页面: JS代码: //选中图片 var form = document.getElementById("danxuan"); // 用表单来初始化 var formData ...

  7. 推荐|近期热点机器学习git项目

    No1: InterpretML by Microsoft--Machine Learning Interpretability github地址:https://github.com/microso ...

  8. What is MongoDB and For What?

    1.MongoDB是什么? MongoDB是一款为web应用程序和互联网基础设施设计的数据库管理系统.没错MongoDB就是数据库,是NoSQL类型的数据库 2.为什么要用MongoDB? (1)Mo ...

  9. 读者来信 | 如果你家HBase集群Region太多请点进来看看,这个问题你可能会遇到

    前言:<读者来信>是HBase老店开设的一个问答专栏,旨在能为更多的小伙伴解决工作中常遇到的HBase相关的问题.老店会尽力帮大家解决这些问题或帮你发出求救贴,老店希望这会是一个互帮互助的 ...

  10. flex布局你真的搞懂了吗?通俗简洁,小白勿入~

    flex布局 用以代替浮动的布局手段: 必须先把一个元素设置为弹性容器://display:flex: 一个元素可以同时是弹性容器和弹性元素; 设为flex布局以后,子元素的float.clear和v ...