tf.nn.conv2d 卷积
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一
第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式
tf.nn.conv2d 卷积的更多相关文章
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- tf.nn.conv2d卷积函数之图片轮廓提取
一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf入门-tf.nn.conv2d是怎样实现卷积的?
转自:https://blog.csdn.net/mao_xiao_feng/article/details/78004522 实验环境:tensorflow版本1.2.0,python2.7 介绍 ...
- tf.nn.conv2d实现卷积的过程
#coding=utf-8 import tensorflow as tf #case 2 input = tf.Variable(tf.round(10 * tf.random_normal([1, ...
- 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- tf.nn.conv2d
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...
- tf.nn.conv2d 参数介绍
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
随机推荐
- 测试必知必会系列- Linux常用命令 - ps(重点)
21篇测试必备的Linux常用命令,每天敲一篇,每次敲三遍,每月一循环,全都可记住!! https://www.cnblogs.com/poloyy/category/1672457.html 查看所 ...
- SSM整合搭建(二)
本页来衔接上一页继续来搭建SSM,再提一下大家如果不详细可以再去看视频哦,B站就有 之后我们来配置SpringMVC的配置文件,主要是配置跳转的逻辑 先扫描所有的业务逻辑组件 我们要用SpringMV ...
- 给 ABP vNext 应用安装私信模块
在上一节五分钟完成 ABP vNext 通讯录 App 开发 中,我们用完成了通讯录 App 的基础开发. 这本章节,我们会给通讯录 App 安装私信模块,使不同用户能够通过相互发送消息,并接收新私信 ...
- 程序员找工作必备 PHP 基础面试题
1.优化 MYSQL 数据库的方法 (1) 选取最适用的字段属性,尽可能减少定义字段长度,尽量把字段设置 NOT NULL, 例如’省份,性别’, 最好设置为 ENUM (2) 使用连接(JOIN)来 ...
- Linux - top命令监控列表的详细解析
统计信息区(系统资源信息区) 前五行,即列表上方的五行 第一行:输出系统任务队列信息 18:46:38:系统当前时间 up 2days 1:54:系统开机后到现在的总运行时间 1 user:当前登录用 ...
- Java爬取丁香医生疫情数据并存储至数据库
1.通过页面的url获取html代码 // 根URL private static String httpRequset(String requesturl) throws IOException { ...
- dirname,basename的用法与用途
#dirname介绍 当对文件使用dirname时,返回文件的上级目录,输出是否是绝对路径取决于输入的文件名是绝对路径 如果对目录使用,则返回上级目录 basename命令与dirname相反,读取文 ...
- FaceBook 发布星际争霸最大 AI 数据集
简介 我们刚发布了最大的星际争霸:Brood War 重播数据集,有 65646 个游戏.完整的数据集经过压缩之后有 365 GB,1535 million 帧,和 496 million 操作动作. ...
- 使用SlimYOLOv3框架实现实时目标检测
介绍 人类可以在几毫秒内在我们的视线中挑选出物体.事实上,你现在就环顾四周,你将观察到周围环境并快速检测到存在的物体,并且把目光回到我们这篇文章来.大概需要多长时间? 这就是实时目标检测.如果我们能让 ...
- 树莓派3B+之Raspbian系统的安装
概述 因为之前一段时间在研究物联网的原因,所以对树莓派这个东西早就有所耳闻.在我的印象里,树莓派几乎无所不能,它可以用来学编程. 搞物联网. 做服务器,甚至还能用它来进行渗透测试.终于,没禁的住诱惑, ...