洛谷题目传送门!!

题目的N这么小,当然是选择用状压DP啦!  等等,我好像不会状缩。。。。

首先,我们当然是要写状态转移方程了!!

那么,如果我们设  f[s]  状态s下,所要的最小花费,那么很显然有状态转移方程:

(s为总集合)

f[(1 << j) | s] =  f[s] + num[i] * dis[i][j]  (从 i 点走向 j点时)

其中,num表示之前已经走过的点的数量,dis表示从i到j的边的距离(这不就是题目要求吗)

很显然,这道题用DFS来做比较方便(跑图和回溯)

等等。

如果我们用不同的走法更新到同一个点,那么是否会影响到我们的更新呢? 显然是会的。

就比如,我们   1 -› 2 -› 3 -› 4  和 1 -›  3  -› 5 -› 2 - › 4  ,两种走法下,num的不同显然会给我们的更新带来不同的影响。

所以,上面的DP走法是有后效性的。

于是,我们要更新DP方程:

f[1 << j | s] = min( best + num[i] * dis[i][j]) , 其中 best 为上一层的最优解。

注意,起点不确定,怎么办?   当然是枚举起点啦!

#include <bits/stdc++.h>
using namespace std;
#define N 13
#define isdigit(c) ((c)>='0'&&(c)<='9')
#define min(a,b) ((a)<(b)?(a):(b)) inline int read(){
int x = , s = ;
char c = getchar();
while(!isdigit(c)){
if(c == '-')s = -;
c = getchar();
}
while(isdigit(c)){
x = (x << ) + (x << ) + (c ^ '');
c = getchar();
}
return x * s;
} int f[N][ << N][N];
int num[N], dis[N][N];
int n, m, limit;
int ans = (int)2e9; /*
状态转移方程:
对于当前的这个点j,如果他处在第 deth 层, 从第i号点转移到 j 则有
f[j][1 << j | s][deth] = best + num[i] * dis[i][j]
best 表示上一层最优解,dis表示i和j之间的距离
*/ void dfs(int s, int best, int deth){
if(best >= ans) return ; /*剪枝*/
if(s == limit) {
ans = min(ans, best); /*已经走完所有点*/
return ;
}
for(int i = ;i < n; i++){
if(!( << i & s)) continue; /*这个点还未走过,不能转移*/
for(int j = ;j < n; j++){
if(!( << j & s) && dis[i][j] < (int)2e9){
if(f[j][ << j | s][deth + ] > best + num[i] * dis[i][j]){
f[j][ << j | s][deth + ] = best + num[i] * dis[i][j]; /*进行转移*/
num[j] = num[i] + ; /*deth + 1, 因为j在i的下一层*/
dfs( << j | s, f[j][ << j | s][deth + ], deth + );
}
}
}
}
return ;
} int main(){
memset(dis, , sizeof(dis));
n = read(), m = read();
limit = ( << n) - ;
for(int i = ;i <= m; i++){
int x = read() - , y = read() - , w = read(); /*编号减一, 给状压用(2 ^ 0 才是 1)*/
dis[x][y] = dis[y][x] = min(dis[x][y], w);
}
for(int i = ;i < n; i++){
memset(num, , sizeof(num));
memset(f, , sizeof(f));
num[i] = ;
dfs( << i, , ); /*1 << i 把第i位设为 1*/
}
printf("%d\n", ans);
return ;
}

NOIP 2017 P3959 宝藏 (状态压缩DP板子)的更多相关文章

  1. 『宝藏 状态压缩DP NOIP2017』

    宝藏(NOIP2017) Description 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度. 小明决 ...

  2. 状态压缩dp(hdu2167,poj2411)

    hdu2167 http://acm.hdu.edu.cn/showproblem.php?pid=2167 给定一个N*N的板子,里面有N*N个数字,选中一些数字,使得和最大 要求任意两个选中的数字 ...

  3. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

  4. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  5. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  6. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  7. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  8. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  9. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

随机推荐

  1. CodeForces - 260B

    A recently found Ancient Prophesy is believed to contain the exact Apocalypse date. The prophesy is ...

  2. tarjan 算法应用

    主要讲证明,流程倒是也有 然后发现自己并不会严谨证明 其实后面一些部分流程还是挺详细 本来这篇blog叫做"图论部分算法证明",然后发现OI中的图论想完全用数学上的方法证明完全超出 ...

  3. CF1328B K-th Beautiful String

    CF1328B K-th Beautiful String,然而CF今天却上不去了,这是洛谷的链接 题意 一个长度为\(n\)的字符串,有2个\(\texttt{b}\)和\(n-2\)个\(\tex ...

  4. redis关闭报没有权限No auth

    Redis安装之后,如果设置了密码,需要在关闭服务的时候也提供密码,否则无法关闭服务,可以直接通过修改/etc/init.d/redis启动脚本解决. Redis服务的启动和关闭脚本,只需要在关闭的脚 ...

  5. Shell脚本(二)数学运算

    直接上代码. #!/bin/bash no1= no2= echo "using let ..." let result=no1+no2 echo "result is: ...

  6. Minimum Euler Cycle(找规律+模拟)

    \(给你一个nnn个结点的完全有向图,求其字典序最小的欧拉回路,输出lll到rrr之间的结点为多少.\) 模拟一下n=5的时候 开始肯定是1-2-1-3-1-4-1-5 注意这个时候不能再从5到1,否 ...

  7. JAVA设计模式之工厂系列(factory)

    任何可以产生对象的方法或者类,都可以称之为工厂.单例就是所谓的静态工厂. 为什么jdk中有了new,还需要工厂呢? a.灵活的控制生产过程 b.给对象加修饰.或者给对象加访问权限,或者能够在对象生产过 ...

  8. shell命令之巧用cut

    需求:取出日志中ip字段,并进行统计排序 .一般用用awk命令 假如ip地址为第一个字段 那么 awk ‘{print $1}’ 文件名 |sort |uniq -c|sort-nr 那如果不是第一个 ...

  9. 02_互联网基本原理和HTML入门

    上节课的知识复习 互联网的原理:服务器.浏览器.HTTP.知道网页文件是真实的物理存在,用HTTP请求这个文件. 要知道网址的含义:http://www.iqianduan.cn/aaa 请求哪个文件 ...

  10. etcd实现服务发现

    前言 etcd环境安装与使用文章中介绍了etcd的安装及v3 API使用,本篇将介绍如何使用etcd实现服务发现功能. 服务发现介绍 服务发现要解决的也是分布式系统中最常见的问题之一,即在同一个分布式 ...