WOJ 1538 Stones II 转化背包问题
昨天是我负责这个题目的,最后没搞出来,真的给队伍拖后腿了。
当时都推出来了 我假设最后结果是取了m个物品,则我把这个m个物品按取的先后编号为 k1 k2 k3 k4...km
则最终结果就是 (k1.a+k2.a+...km.a)-((m-1)*k1.b+(m-2)*k2.b+....+1*k(m-1).b+0*km.b);
由此可见最终的结果必定是从n个石头中选出m个石头,而且这m个石头要按b值的升序来取,因为按上述式子,这m个石头的a值顺序不影响结果,但b值越小的放前面就使得结果越优,这里也算用了一下贪心思想吧,不过是显而易见的。
然后当时聪哥就照着这个敲了一个贪心的,WA了。。。之后就肯定了绝对不仅仅用贪心来解
然后一直到比赛结束,我都没想到合适的方法来解。。。
其实已经给定了取的顺序,在n个物品中取m件使得价值最大。。。这不就是典型的背包问题嘛。。。哎,我真的是觉得自己当时脑袋短路的可以
于是我们定义一个d[i][j],表示当前第i件物品放到j位置的最大值(当然该件物品也可以不取,但这个状态必须保留下来)。
于是我们把b值按降序排序。从后往前来取石头比较好算一点。
d[i][j]=max(d[i-1][j],d[i-1][j-1]+ai-(j-1)*bi)
d[i-1][j]就代表当前这个物品我不取,后面那个就代表取,但是我就有点纠结这个(j-1)*bi这里,因为我背包过程中,d[i][j]虽然是规定了i件物品在在第j次取,但是之前也存在不取的情况,那此时这个石头还是第j次取吗?后来我发现自己想多了,首先按我的定义这个式子是肯定没错的,其次,如果结果最终是存在一个取石头的序列,那么必定就能通过这个式子来得到结果。。否则就是0了。就是把i件物品在各个位置的值都求一下,最后总结起来就存在那样的放置方法即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
using namespace std;
int d[N][N];
struct node
{
int a,b;
bool operator <(const node &rhs) const
{
if (b==rhs.b)
return a>rhs.a;
return b>rhs.b;
}
} s[N];
int main()
{
int n;
while (scanf("%d",&n) && n)
{
for (int i=;i<=n;i++)
scanf("%d%d",&s[i].a,&s[i].b);
sort(s+,s++n);
memset(d,,sizeof d);
for (int i=;i<=n;i++)
{
for (int j=;j<=i;j++)
{
d[i][j]=max(d[i-][j],d[i-][j-]+s[i].a-(j-)*s[i].b);
}
}
int ans=;
for (int i=;i<=n;i++)
ans=max(ans,d[n][i]);
printf("%d\n",ans);
}
return ;
}
WOJ 1538 Stones II 转化背包问题的更多相关文章
- WHU 1538 Stones II 动态规划
赛后写的,动态规划,学长和题解,提供了两种状态设计的思路,都写了下……结果在写第二种的时候,不小心把下标的起点写错了,导致WA了无数发…… 无奈啊……每次都是这种错误…… 题意: 大概就是有n块石头, ...
- WOJ 1538 B - Stones II
Problem 1538 - B - Stones IITime Limit: 1000MS Memory Limit: 65536KB Total Submit: 416 Accepted: 63 ...
- whu 1538 - B - Stones II 01背包
题目链接: http://acm.whu.edu.cn/land/problem/detail?problem_id=1538 Problem 1538 - B - Stones II Time Li ...
- Problem 1538 - B - Stones II 贪心+DP
还是给你石头n枚,每一枚石头有两个值a和b,每取一个石头,除了这块石头其余所有的石头的a就都减去这个石头的b,问你取了的石头的a的总和最大可以为多少? 先按B从大到小排序 然后DP: 取的话:dp[i ...
- UVa 11426 - GCD - Extreme (II) 转化+筛法生成欧拉函数表
<训练指南>p.125 设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n); 则所求答案为S[n] = f[2]+f[3]+……+f[n] ...
- 【转载】ACM总结——dp专辑
感谢博主—— http://blog.csdn.net/cc_again?viewmode=list ---------- Accagain 2014年5月15日 动态规划一 ...
- 【DP专辑】ACM动态规划总结
转载请注明出处,谢谢. http://blog.csdn.net/cc_again?viewmode=list ---------- Accagain 2014年5月15日 ...
- dp专题训练
****************************************************************************************** 动态规划 专题训练 ...
- 【DP专辑】ACM动态规划总结(转)
http://blog.csdn.net/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间效率高,代码量少,多元性强, ...
随机推荐
- maven加载ojdbc14报错
问题复现步骤: 1.在pom.xml里面添加ojdbc14的依赖,代码如下: <dependency> <groupId>com.oracle</groupId> ...
- #pragma命令详解
每种C和C++的实现支持对其宿主机或操作系统唯一的功能.例如,一些程序需要精确控制超出数据所在的储存空间,或着控制特定函数接受参数的方式.#pragma指示使每个编译程序在保留C和C++语言的整体兼容 ...
- WEB前段(HTML+JS),后端(MYSQL+PHP)开发基础
一.HTML HTML:超文本标记语言,可以加载JS/CSS/图片/链接等非文字的内容 一切的网页开发技术都需要建立在HTML的基础之上 HTML的结构和语法 HTML元素 注释: <!-- ...
- P1003 我要通过!
转跳点:
- nodejs - fs模块 - 文件操作
1, fs.stat 检测是文件还是目录 2, fs.mkdir 创建目录 var fs = require('fs') fs.mkdir('./dir',function(err){ if(err ...
- nginx location语法解释
1.没有修饰符 表示:必须以指定模式开始,如: 默认模式 server { server_name baidu.com; location /abc { …… } } htt ...
- CentOs 后台运行jar
1.启动jar包,后台运行 nohup java -jar xxxx.jar & 2.结束运行 查出正在运行的进程 ps -ef | grep java 杀掉进程 kill pid 上面橙色字 ...
- 035-PHP简单定义一个闭包函数
<?php /* + 什么是闭包函数?即一个函数内部,包含了1-N个匿名函数, + 用处是可以做局部数据缓存与实现封装(有点类似class) */ # 函数内部,定义一个匿名函数,即可称为闭包函 ...
- 087-把PHP数组中的元素按随机顺序重新排列shuffle
<?php $arr=array(3,23,'A','f','123','hello'); //定义一个数组 echo '排序之前的数组信息:<br>'; print_r($arr) ...
- jQuery判断输入法和非输入法输入
需求背景: 页面需要输入完成后自动查询. 解决方案: $('input').on('input', function() { if ($(this).prop('comStart')) return; ...