对于许多科学家、工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架。TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好。

在过去的几年里,两个主要的深度学习库KerasPytorch获得了大量关注,主要是因为它们的使用比较简单。

本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因。

Keras

Keras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API。目前它支持TensorFlow、Theano和CNTK。

Keras的优点在于它的易用性。这是迄今为止最容易上手并快速运行的框架。定义神经网络是非常直观的,因为使用API可以将层定义为函数。

Pytorch

Pytorch是一个深度学习框架(类似于TensorFlow),由Facebook的人工智能研究小组开发。与Keras一样,它也抽象出了深层网络编程的许多混乱部分。

就高级和低级代码风格而言,Pytorch介于Keras和TensorFlow之间。比起Keras具有更大的灵活性和控制能力,但同时又不必进行任何复杂的声明式编程(declarative programming)。

深度学习的从业人员整天都在纠结应该使用哪个框架。一般来说,这取决于个人喜好。但是在选择Keras和Pytorch时,你应该记住它们的几个方面。

(1)定义模型的类与函数

为了定义深度学习模型,Keras提供了函数式API。使用函数式API,神经网络被定义为一系列顺序化的函数,一个接一个地被应用。例如,函数定义层1( function defining layer 1)的输出是函数定义层2的输入。

img_input = layers.Input(shape=input_shape)
x = layers.Conv2D(64, (3, 3), activation='relu')(img_input)    
x = layers.Conv2D(64, (3, 3), activation='relu')(x)    
x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)

在Pytorch中,你将网络设置为一个继承来自Torch库的torch.nn.Module的类。与Keras类似,Pytorch提供给你将层作为构建块的能力,但是由于它们在Python类中,所以它们在类的init_()方法中被引用,并由类的forward()方法执行。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3)
        self.conv2 = nn.Conv2d(64, 64, 3)
        self.pool = nn.MaxPool2d(2, 2)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool(F.relu(self.conv2(x)))
        return x
model = Net()

(2)张量和计算图模型与标准数组的比较

Keras API向普通程序员隐藏了许多混乱的细节。这使得定义网络层是直观的,并且默认的设置通常足以让你入门。

只有当你正在实现一个相当先进或“奇特”的模型时,你才真正需要深入了解底层,了解一些基本的TensorFlow。

棘手的部分是,当你真正深入到较低级别的TensorFlow代码时,所有的挑战就随之而来!你需要确保所有的矩阵乘法都对齐。不要试着想打印出你自己定义的层的输出,因为你只会得到一个打印在你的终端上的没有错误的张量定义。

Pytorch在这些方面更宽容一些。你需要知道每个层的输入和输出大小,但是这是一个比较容易的方面,你可以很快掌握它。你不需要构建一个抽象的计算图,避免了在实际调试时无法看到该抽象的计算图的细节。

Pytorch的另一个优点是平滑性,你可以在Torch张量和Numpy数组之间来回切换。如果你需要实现一些自定义的东西,那么在TF张量和Numpy数组之间来回切换可能会很麻烦,这要求开发人员对TensorFlow会话有一个较好的理解。

Pytorch的互操作实际上要简单得多。你只需要知道两种操作:一种是将Torch张量(一个可变对象)转换为Numpy,另一种是反向操作。

当然,如果你从来不需要实现任何奇特的东西,那么Keras就会做得很好,因为你不会遇到任何TensorFlow的障碍。但是如果你有这个需求,那么Pytorch将会是一个更加好的选择。

(3)训练模型

用Keras训练模特超级简单!只需一个简单的.fit(),你就可以直接去跑步了。

history = model.fit_generator(
    generator=train_generator,
    epochs=10,
    validation_data=validation_generator)

在Pytorch中训练模型包括以下几个步骤:

  1. 在每批训练开始时初始化梯度

  2. 前向传播

  3. 反向传播

  4. 计算损失并更新权重

# 在数据集上循环多次
for epoch in range(2):  
    for i, data in enumerate(trainloader, 0):
        # 获取输入; data是列表[inputs, labels]
        inputs, labels = data 
        # (1) 初始化梯度
        optimizer.zero_grad()          # (2) 前向传播
        outputs = net(inputs)
        loss = criterion(outputs, labels)         # (3) 反向传播
        loss.backward()
        # (4) 计算损失并更新权重
        optimizer.step()

光是训练就需要很多步骤!

我想这种方式你就会知道实际上发生了什么。由于这些模型训练步骤对于训练不同的模型本质上保持不变,所以这些代码实际上完全不必要的。

(4)控制CPU与GPU模式的比较

如果你已经安装了tensorflow-gpu,那么在Keras中使用GPU是默认启用和完成的。如果希望将某些操作转移到CPU,可以使用以下代码。

with tf.device('/cpu:0'):
    y = apply_non_max_suppression(x)

对于Pytorch,你必须显式地为每个torch张量和numpy变量启用GPU。这将使代码变得混乱,如果你在CPU和GPU之间来回移动以执行不同的操作,则很容易出错。

例如,为了将我们之前的模型转移到GPU上运行,我们需要做以下工作:

#获取GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #传送网络到GPU
net.to(device) # 传送输入和标签到GPU
inputs, labels = data[0].to(device), data[1].to(device)

Keras在这方面的优势在于它的简单性和良好的默认设置

选择框架的一般建议

我通常给出的建议是从Keras开始。

Keras绝对是最容易使用、理解和快速上手并运行的框架。你不需要担心GPU设置,处理抽象代码,或者做任何复杂的事情。你甚至可以在不接触TensorFlow的任何一行的情况下实现定制层和损失函数。

如果你确实开始深入到深度网络的更细粒度方面,或者正在实现一些非标准的东西,那么Pytorch就是你的首选库。在Keras上实现反而会有一些额外的工作量,虽然不多,但这会拖慢你的进度。使用pytorch能够快速地实现、训练和测试你的网络,并附带易于调试的额外好处!

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

深度学习框架Keras与Pytorch对比的更多相关文章

  1. 如何评价深度学习框架Keras?

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  2. 基于Theano的深度学习框架keras及配合SVM训练模型

    https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch, ...

  3. 【深度学习框架】使用PyTorch进行数据处理

      在深度学习中,数据的处理对于神经网络的训练来说十分重要,良好的数据(包括图像.文本.语音等)处理不仅可以加速模型的训练,同时也直接关系到模型的效果.本文以处理图像数据为例,记录一些使用PyTorc ...

  4. 常用深度学习框架(keras,pytorch.cntk,theano)conda 安装--未整理

    版本查询 cpu tensorflow conda env list source activate tensorflow python import tensorflow as tf 和 tf.__ ...

  5. 深度学习框架Keras介绍及实战

    Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行.Keras 的开发重点是支持快速的实验.能够以最小的时延 ...

  6. 基于Windows,Python,Theano的深度学习框架Keras的配置

    1.安装Anaconda 面向科学计算的Python IDE--Anaconda 2.打开Anaconda Prompt 3.安装gcc环境 (1)conda update conda (2)cond ...

  7. 深度学习框架Keras安装

    环境:Windows 10 64位 版本!版本!版本!不要下载最新版本的! 一点要按照这个来!安装顺序也最好不要错! 首先安装DirectX SDK工具包 ,这是链接:https://www.micr ...

  8. 深度学习与CV教程(8) | 常见深度学习框架介绍

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  9. 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

    http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...

随机推荐

  1. [置顶] 利用Python 提醒实验室同学值日(自动发送邮件)

    前言: 在实验室里一直存在着一个问题,就是老是有人忘记提醒下一个人值日,然后值日就被迫中断了.毕竟良好的        卫生环境需要大家一起来维护的!没办法只能想出一些小对策了. 解决思路: 首先,我 ...

  2. USB小白学习之路(12) Cy7c68013A固件之Slave FIFO(转)

    Cy7c68013固件之Slave FIFO 转自:http://blog.csdn.net/zengshaoqing/article/details/53053539 选择SlaveFIFO传输方式 ...

  3. 线程中断 interrupt 和 LockSupport

    本文章将要介绍的内容有以下几点,读者朋友也可先自行思考一下相关问题: 线程中断 interrupt 方法怎么理解,意思就是线程中断了吗?那当前线程还能继续执行吗? 判断线程是否中断的方法有几个,它们之 ...

  4. iOS Swift 开发语言之初接触,纯代码创建UIView,UITableView,UICollectionView

    1. 初始化Label设置AttributeString override func viewDidLoad() { let label = UILabel(frame:CGRect(x:,y:,wi ...

  5. go语言指南之斐波纳契闭包

    练习:斐波纳契闭包 让我们用函数做些好玩的事情. 实现一个 fibonacci 函数,它返回一个函数(闭包),该闭包返回一个斐波纳契数列 `(0, 1, 1, 2, 3, 5, ...)`. 这是一个 ...

  6. 利用机器学习检测HTTP恶意外连流量

    本文通过使用机器学习算法来检测HTTP的恶意外连流量,算法通过学习恶意样本间的相似性将各个恶意家族的恶意流量聚类为不同的模板.并可以通过模板发现未知的恶意流量.实验显示算法有较好的检测率和泛化能力. ...

  7. Spring配置cache(concurrentHashMap,guava cache、redis实现)附源码

    在应用程序中,数据一般是存在数据库中(磁盘介质),对于某些被频繁访问的数据,如果每次都访问数据库,不仅涉及到网络io,还受到数据库查询的影响:而目前通常会将频繁使用,并且不经常改变的数据放入缓存中,从 ...

  8. 支持IE6、IE7、IE8等低端浏览器的简化版vue

    最近研究Vue的底层原理,写了一个简化版的Vue,可以在支持IE6.IE7.IE8等低端浏览器运行.由于低端浏览器不支持对象属性定义,所以设置属性不支持直接赋值,需要调用虚拟机实例的set方法.目前只 ...

  9. Docker Compose + Traefik v2 快速安装, 自动申请SSL证书 http转https 初次尝试

    前言 昨晚闲得无聊睡不着觉,拿起服务器尝试部署了一下Docker + Traefik v2.1.6 ,以下是一些配置的总结,初次接触,大佬勿喷. 我的系统环境是 Ubuntu 18.04.3 LTS ...

  10. Java继承中构造器的调用原理

    Java的继承是比较重要的特性,也是比较容易出错的地方,下面这个例子将展示如果父类构造器中调用被子类重写的方法时会出现的情况: 首先是父类: public class test { void fun( ...